Таблица истинности для функции (X→Y)∧X→Y:


Промежуточные таблицы истинности:
X→Y:
XYX→Y
001
011
100
111

(X→Y)∧X:
XYX→Y(X→Y)∧X
0010
0110
1000
1111

((X→Y)∧X)→Y:
XYX→Y(X→Y)∧X((X→Y)∧X)→Y
00101
01101
10001
11111

Общая таблица истинности:

XYX→Y(X→Y)∧X(X→Y)∧X→Y
00101
01101
10001
11111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYF
001
011
101
111
Fсднф = ¬X∧¬Y ∨ ¬X∧Y ∨ X∧¬Y ∨ X∧Y
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYF
001
011
101
111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
XYFж
001
011
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧X ⊕ C01∧Y ⊕ C11∧X∧Y

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 1 ⊕ 1 = 0
Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы