Таблица истинности для функции (¬A∧¬B∧¬C∧¬D)∨(A∧¬B∧¬C∧¬D)∨(A∧¬B∧C∧¬D)∨(A∧¬B∧¬C∧¬D)∨(A∧B∧C∧D):


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

¬C:
C¬C
01
10

¬D:
D¬D
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

((¬A)∧(¬B))∧(¬C):
ABC¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∧(¬C)
00011111
00111100
01010010
01110000
10001010
10101000
11000010
11100000

(((¬A)∧(¬B))∧(¬C))∧(¬D):
ABCD¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∧(¬C)¬D(((¬A)∧(¬B))∧(¬C))∧(¬D)
00001111111
00011111100
00101110010
00111110000
01001001010
01011001000
01101000010
01111000000
10000101010
10010101000
10100100010
10110100000
11000001010
11010001000
11100000010
11110000000

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

(A∧(¬B))∧(¬C):
ABC¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)
0001010
0011000
0100010
0110000
1001111
1011100
1100010
1110000

((A∧(¬B))∧(¬C))∧(¬D):
ABCD¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)
0000101010
0001101000
0010100010
0011100000
0100001010
0101001000
0110000010
0111000000
1000111111
1001111100
1010110010
1011110000
1100001010
1101001000
1110000010
1111000000

(A∧(¬B))∧C:
ABC¬BA∧(¬B)(A∧(¬B))∧C
000100
001100
010000
011000
100110
101111
110000
111000

((A∧(¬B))∧C)∧(¬D):
ABCD¬BA∧(¬B)(A∧(¬B))∧C¬D((A∧(¬B))∧C)∧(¬D)
000010010
000110000
001010010
001110000
010000010
010100000
011000010
011100000
100011010
100111000
101011111
101111100
110000010
110100000
111000010
111100000

A∧B:
ABA∧B
000
010
100
111

(A∧B)∧C:
ABCA∧B(A∧B)∧C
00000
00100
01000
01100
10000
10100
11010
11111

((A∧B)∧C)∧D:
ABCDA∧B(A∧B)∧C((A∧B)∧C)∧D
0000000
0001000
0010000
0011000
0100000
0101000
0110000
0111000
1000000
1001000
1010000
1011000
1100100
1101100
1110110
1111111

((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)):
ABCD¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∧(¬C)¬D(((¬A)∧(¬B))∧(¬C))∧(¬D)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D))
000011111111010101
000111111001010000
001011100101000100
001111100001000000
010010010100010100
010110010000010000
011010000100000100
011110000000000000
100001010101111111
100101010001111000
101001000101100100
101101000001100000
110000010100010100
110100010000010000
111000000100000100
111100000000000000

(((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)):
ABCD¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∧(¬C)¬D(((¬A)∧(¬B))∧(¬C))∧(¬D)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D))¬BA∧(¬B)(A∧(¬B))∧C¬D((A∧(¬B))∧C)∧(¬D)(((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D))
000011111111010101100101
000111111001010000100000
001011100101000100100100
001111100001000000100000
010010010100010100000100
010110010000010000000000
011010000100000100000100
011110000000000000000000
100001010101111111110101
100101010001111000110000
101001000101100100111111
101101000001100000111000
110000010100010100000100
110100010000010000000000
111000000100000100000100
111100000000000000000000

((((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)))∨(((A∧(¬B))∧(¬C))∧(¬D)):
ABCD¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∧(¬C)¬D(((¬A)∧(¬B))∧(¬C))∧(¬D)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D))¬BA∧(¬B)(A∧(¬B))∧C¬D((A∧(¬B))∧C)∧(¬D)(((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D))¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)((((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)))∨(((A∧(¬B))∧(¬C))∧(¬D))
0000111111110101011001011010101
0001111110010100001000001010000
0010111001010001001001001000100
0011111000010000001000001000000
0100100101000101000001000010100
0101100100000100000000000010000
0110100001000001000001000000100
0111100000000000000000000000000
1000010101011111111101011111111
1001010100011110001100001111000
1010010001011001001111111100101
1011010000011000001110001100000
1100000101000101000001000010100
1101000100000100000000000010000
1110000001000001000001000000100
1111000000000000000000000000000

(((((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧B)∧C)∧D):
ABCD¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∧(¬C)¬D(((¬A)∧(¬B))∧(¬C))∧(¬D)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D))¬BA∧(¬B)(A∧(¬B))∧C¬D((A∧(¬B))∧C)∧(¬D)(((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D))¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)¬D((A∧(¬B))∧(¬C))∧(¬D)((((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)))∨(((A∧(¬B))∧(¬C))∧(¬D))A∧B(A∧B)∧C((A∧B)∧C)∧D(((((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧B)∧C)∧D)
00001111111101010110010110101010001
00011111100101000010000010100000000
00101110010100010010010010001000000
00111110000100000010000010000000000
01001001010001010000010000101000000
01011001000001000000000000100000000
01101000010000010000010000001000000
01111000000000000000000000000000000
10000101010111111111010111111110001
10010101000111100011000011110000000
10100100010110010011111111001010001
10110100000110000011100011000000000
11000001010001010000010000101001000
11010001000001000000000000100001000
11100000010000010000010000001001100
11110000000000000000000000000001111

Общая таблица истинности:

ABCD¬A¬B¬C¬D(¬A)∧(¬B)((¬A)∧(¬B))∧(¬C)(((¬A)∧(¬B))∧(¬C))∧(¬D)A∧(¬B)(A∧(¬B))∧(¬C)((A∧(¬B))∧(¬C))∧(¬D)(A∧(¬B))∧C((A∧(¬B))∧C)∧(¬D)A∧B(A∧B)∧C((A∧B)∧C)∧D((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D))(((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D))((((((¬A)∧(¬B))∧(¬C))∧(¬D))∨(((A∧(¬B))∧(¬C))∧(¬D)))∨(((A∧(¬B))∧C)∧(¬D)))∨(((A∧(¬B))∧(¬C))∧(¬D))(¬A∧¬B∧¬C∧¬D)∨(A∧¬B∧¬C∧¬D)∨(A∧¬B∧C∧¬D)∨(A∧¬B∧¬C∧¬D)∨(A∧B∧C∧D)
00001111111000000001111
00011110110000000000000
00101101100000000000000
00111100100000000000000
01001011000000000000000
01011010000000000000000
01101001000000000000000
01111000000000000000000
10000111000111000001111
10010110000110000000000
10100101000100110000111
10110100000100100000000
11000011000000001000000
11010010000000001000000
11100001000000001100000
11110000000000001110001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDF
00001
00010
00100
00110
01000
01010
01100
01110
10001
10010
10101
10110
11000
11010
11100
11111
Fсднф = ¬A∧¬B∧¬C∧¬D ∨ A∧¬B∧¬C∧¬D ∨ A∧¬B∧C∧¬D ∨ A∧B∧C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDF
00001
00010
00100
00110
01000
01010
01100
01110
10001
10010
10101
10110
11000
11010
11100
11111
Fскнф = (A∨B∨C∨¬D) ∧ (A∨B∨¬C∨D) ∧ (A∨B∨¬C∨¬D) ∧ (A∨¬B∨C∨D) ∧ (A∨¬B∨C∨¬D) ∧ (A∨¬B∨¬C∨D) ∧ (A∨¬B∨¬C∨¬D) ∧ (¬A∨B∨C∨¬D) ∧ (¬A∨B∨¬C∨¬D) ∧ (¬A∨¬B∨C∨D) ∧ (¬A∨¬B∨C∨¬D) ∧ (¬A∨¬B∨¬C∨D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDFж
00001
00010
00100
00110
01000
01010
01100
01110
10001
10010
10101
10110
11000
11010
11100
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧D

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 1 ⊕ 0 = 1
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 1 ⊕ 0 = 1
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ C ⊕ D ⊕ A∧C ⊕ B∧C ⊕ B∧D ⊕ C∧D ⊕ A∧B∧C ⊕ A∧C∧D ⊕ B∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы