Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬X∧Y∧Z∨X∧¬Y∧¬Z≡¬(¬(¬X∧Y∧Z)∧¬(X∧¬Y∧¬Z)):
Промежуточные таблицы истинности:¬X: (¬X)∧Y: X | Y | ¬X | (¬X)∧Y | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((¬X)∧Y)∧Z: X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
¬Y: ¬Z: X∧(¬Y): X | Y | ¬Y | X∧(¬Y) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
(X∧(¬Y))∧(¬Z): X | Y | Z | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
¬(((¬X)∧Y)∧Z): X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬(((¬X)∧Y)∧Z) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
¬((X∧(¬Y))∧(¬Z)): X | Y | Z | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | ¬((X∧(¬Y))∧(¬Z)) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
(¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))): X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬(((¬X)∧Y)∧Z) | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | ¬((X∧(¬Y))∧(¬Z)) | (¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
¬((¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z)))): X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬(((¬X)∧Y)∧Z) | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | ¬((X∧(¬Y))∧(¬Z)) | (¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))) | ¬((¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z)))) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
(((¬X)∧Y)∧Z)∨((X∧(¬Y))∧(¬Z)): X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | (((¬X)∧Y)∧Z)∨((X∧(¬Y))∧(¬Z)) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((¬X)∧Y)∧Z)∨((X∧(¬Y))∧(¬Z)))≡(¬((¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))))): X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | (((¬X)∧Y)∧Z)∨((X∧(¬Y))∧(¬Z)) | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬(((¬X)∧Y)∧Z) | ¬Y | X∧(¬Y) | ¬Z | (X∧(¬Y))∧(¬Z) | ¬((X∧(¬Y))∧(¬Z)) | (¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))) | ¬((¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z)))) | ((((¬X)∧Y)∧Z)∨((X∧(¬Y))∧(¬Z)))≡(¬((¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))))) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
Общая таблица истинности:X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬Y | ¬Z | X∧(¬Y) | (X∧(¬Y))∧(¬Z) | ¬(((¬X)∧Y)∧Z) | ¬((X∧(¬Y))∧(¬Z)) | (¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z))) | ¬((¬(((¬X)∧Y)∧Z))∧(¬((X∧(¬Y))∧(¬Z)))) | (((¬X)∧Y)∧Z)∨((X∧(¬Y))∧(¬Z)) | ¬X∧Y∧Z∨X∧¬Y∧¬Z≡¬(¬(¬X∧Y∧Z)∧¬(X∧¬Y∧¬Z)) | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|