Таблица истинности для функции (A⊕(B→C))∧(¬D∨(E→F)):


Промежуточные таблицы истинности:
B→C:
BCB→C
001
011
100
111

A⊕(B→C):
ABCB→CA⊕(B→C)
00011
00111
01000
01111
10010
10110
11001
11110

E→F:
EFE→F
001
011
100
111

¬D:
D¬D
01
10

(¬D)∨(E→F):
DEF¬DE→F(¬D)∨(E→F)
000111
001111
010101
011111
100011
101011
110000
111011

(A⊕(B→C))∧((¬D)∨(E→F)):
ABCDEFB→CA⊕(B→C)¬DE→F(¬D)∨(E→F)(A⊕(B→C))∧((¬D)∨(E→F))
000000111111
000001111111
000010111011
000011111111
000100110111
000101110111
000110110000
000111110111
001000111111
001001111111
001010111011
001011111111
001100110111
001101110111
001110110000
001111110111
010000001110
010001001110
010010001010
010011001110
010100000110
010101000110
010110000000
010111000110
011000111111
011001111111
011010111011
011011111111
011100110111
011101110111
011110110000
011111110111
100000101110
100001101110
100010101010
100011101110
100100100110
100101100110
100110100000
100111100110
101000101110
101001101110
101010101010
101011101110
101100100110
101101100110
101110100000
101111100110
110000011111
110001011111
110010011011
110011011111
110100010111
110101010111
110110010000
110111010111
111000101110
111001101110
111010101010
111011101110
111100100110
111101100110
111110100000
111111100110

Общая таблица истинности:

ABCDEFB→CA⊕(B→C)E→F¬D(¬D)∨(E→F)(A⊕(B→C))∧(¬D∨(E→F))
000000111111
000001111111
000010110111
000011111111
000100111011
000101111011
000110110000
000111111011
001000111111
001001111111
001010110111
001011111111
001100111011
001101111011
001110110000
001111111011
010000001110
010001001110
010010000110
010011001110
010100001010
010101001010
010110000000
010111001010
011000111111
011001111111
011010110111
011011111111
011100111011
011101111011
011110110000
011111111011
100000101110
100001101110
100010100110
100011101110
100100101010
100101101010
100110100000
100111101010
101000101110
101001101110
101010100110
101011101110
101100101010
101101101010
101110100000
101111101010
110000011111
110001011111
110010010111
110011011111
110100011011
110101011011
110110010000
110111011011
111000101110
111001101110
111010100110
111011101110
111100101010
111101101010
111110100000
111111101010

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDEFF
0000001
0000011
0000101
0000111
0001001
0001011
0001100
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011100
0011111
0100000
0100010
0100100
0100110
0101000
0101010
0101100
0101110
0110001
0110011
0110101
0110111
0111001
0111011
0111100
0111111
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100001
1100011
1100101
1100111
1101001
1101011
1101100
1101111
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111110
Fсднф = ¬A∧¬B∧¬C∧¬D∧¬E∧¬F ∨ ¬A∧¬B∧¬C∧¬D∧¬E∧F ∨ ¬A∧¬B∧¬C∧¬D∧E∧¬F ∨ ¬A∧¬B∧¬C∧¬D∧E∧F ∨ ¬A∧¬B∧¬C∧D∧¬E∧¬F ∨ ¬A∧¬B∧¬C∧D∧¬E∧F ∨ ¬A∧¬B∧¬C∧D∧E∧F ∨ ¬A∧¬B∧C∧¬D∧¬E∧¬F ∨ ¬A∧¬B∧C∧¬D∧¬E∧F ∨ ¬A∧¬B∧C∧¬D∧E∧¬F ∨ ¬A∧¬B∧C∧¬D∧E∧F ∨ ¬A∧¬B∧C∧D∧¬E∧¬F ∨ ¬A∧¬B∧C∧D∧¬E∧F ∨ ¬A∧¬B∧C∧D∧E∧F ∨ ¬A∧B∧C∧¬D∧¬E∧¬F ∨ ¬A∧B∧C∧¬D∧¬E∧F ∨ ¬A∧B∧C∧¬D∧E∧¬F ∨ ¬A∧B∧C∧¬D∧E∧F ∨ ¬A∧B∧C∧D∧¬E∧¬F ∨ ¬A∧B∧C∧D∧¬E∧F ∨ ¬A∧B∧C∧D∧E∧F ∨ A∧B∧¬C∧¬D∧¬E∧¬F ∨ A∧B∧¬C∧¬D∧¬E∧F ∨ A∧B∧¬C∧¬D∧E∧¬F ∨ A∧B∧¬C∧¬D∧E∧F ∨ A∧B∧¬C∧D∧¬E∧¬F ∨ A∧B∧¬C∧D∧¬E∧F ∨ A∧B∧¬C∧D∧E∧F
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDEFF
0000001
0000011
0000101
0000111
0001001
0001011
0001100
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011100
0011111
0100000
0100010
0100100
0100110
0101000
0101010
0101100
0101110
0110001
0110011
0110101
0110111
0111001
0111011
0111100
0111111
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100001
1100011
1100101
1100111
1101001
1101011
1101100
1101111
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111110
Fскнф = (A∨B∨C∨¬D∨¬E∨F) ∧ (A∨B∨¬C∨¬D∨¬E∨F) ∧ (A∨¬B∨C∨D∨E∨F) ∧ (A∨¬B∨C∨D∨E∨¬F) ∧ (A∨¬B∨C∨D∨¬E∨F) ∧ (A∨¬B∨C∨D∨¬E∨¬F) ∧ (A∨¬B∨C∨¬D∨E∨F) ∧ (A∨¬B∨C∨¬D∨E∨¬F) ∧ (A∨¬B∨C∨¬D∨¬E∨F) ∧ (A∨¬B∨C∨¬D∨¬E∨¬F) ∧ (A∨¬B∨¬C∨¬D∨¬E∨F) ∧ (¬A∨B∨C∨D∨E∨F) ∧ (¬A∨B∨C∨D∨E∨¬F) ∧ (¬A∨B∨C∨D∨¬E∨F) ∧ (¬A∨B∨C∨D∨¬E∨¬F) ∧ (¬A∨B∨C∨¬D∨E∨F) ∧ (¬A∨B∨C∨¬D∨E∨¬F) ∧ (¬A∨B∨C∨¬D∨¬E∨F) ∧ (¬A∨B∨C∨¬D∨¬E∨¬F) ∧ (¬A∨B∨¬C∨D∨E∨F) ∧ (¬A∨B∨¬C∨D∨E∨¬F) ∧ (¬A∨B∨¬C∨D∨¬E∨F) ∧ (¬A∨B∨¬C∨D∨¬E∨¬F) ∧ (¬A∨B∨¬C∨¬D∨E∨F) ∧ (¬A∨B∨¬C∨¬D∨E∨¬F) ∧ (¬A∨B∨¬C∨¬D∨¬E∨F) ∧ (¬A∨B∨¬C∨¬D∨¬E∨¬F) ∧ (¬A∨¬B∨C∨¬D∨¬E∨F) ∧ (¬A∨¬B∨¬C∨D∨E∨F) ∧ (¬A∨¬B∨¬C∨D∨E∨¬F) ∧ (¬A∨¬B∨¬C∨D∨¬E∨F) ∧ (¬A∨¬B∨¬C∨D∨¬E∨¬F) ∧ (¬A∨¬B∨¬C∨¬D∨E∨F) ∧ (¬A∨¬B∨¬C∨¬D∨E∨¬F) ∧ (¬A∨¬B∨¬C∨¬D∨¬E∨F) ∧ (¬A∨¬B∨¬C∨¬D∨¬E∨¬F)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDEFFж
0000001
0000011
0000101
0000111
0001001
0001011
0001100
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011100
0011111
0100000
0100010
0100100
0100110
0101000
0101010
0101100
0101110
0110001
0110011
0110101
0110111
0111001
0111011
0111100
0111111
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100001
1100011
1100101
1100111
1101001
1101011
1101100
1101111
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111110

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧A ⊕ C010000∧B ⊕ C001000∧C ⊕ C000100∧D ⊕ C000010∧E ⊕ C000001∧F ⊕ C110000∧A∧B ⊕ C101000∧A∧C ⊕ C100100∧A∧D ⊕ C100010∧A∧E ⊕ C100001∧A∧F ⊕ C011000∧B∧C ⊕ C010100∧B∧D ⊕ C010010∧B∧E ⊕ C010001∧B∧F ⊕ C001100∧C∧D ⊕ C001010∧C∧E ⊕ C001001∧C∧F ⊕ C000110∧D∧E ⊕ C000101∧D∧F ⊕ C000011∧E∧F ⊕ C111000∧A∧B∧C ⊕ C110100∧A∧B∧D ⊕ C110010∧A∧B∧E ⊕ C110001∧A∧B∧F ⊕ C101100∧A∧C∧D ⊕ C101010∧A∧C∧E ⊕ C101001∧A∧C∧F ⊕ C100110∧A∧D∧E ⊕ C100101∧A∧D∧F ⊕ C100011∧A∧E∧F ⊕ C011100∧B∧C∧D ⊕ C011010∧B∧C∧E ⊕ C011001∧B∧C∧F ⊕ C010110∧B∧D∧E ⊕ C010101∧B∧D∧F ⊕ C010011∧B∧E∧F ⊕ C001110∧C∧D∧E ⊕ C001101∧C∧D∧F ⊕ C001011∧C∧E∧F ⊕ C000111∧D∧E∧F ⊕ C111100∧A∧B∧C∧D ⊕ C111010∧A∧B∧C∧E ⊕ C111001∧A∧B∧C∧F ⊕ C110110∧A∧B∧D∧E ⊕ C110101∧A∧B∧D∧F ⊕ C110011∧A∧B∧E∧F ⊕ C101110∧A∧C∧D∧E ⊕ C101101∧A∧C∧D∧F ⊕ C101011∧A∧C∧E∧F ⊕ C100111∧A∧D∧E∧F ⊕ C011110∧B∧C∧D∧E ⊕ C011101∧B∧C∧D∧F ⊕ C011011∧B∧C∧E∧F ⊕ C010111∧B∧D∧E∧F ⊕ C001111∧C∧D∧E∧F ⊕ C111110∧A∧B∧C∧D∧E ⊕ C111101∧A∧B∧C∧D∧F ⊕ C111011∧A∧B∧C∧E∧F ⊕ C110111∧A∧B∧D∧E∧F ⊕ C101111∧A∧C∧D∧E∧F ⊕ C011111∧B∧C∧D∧E∧F ⊕ C111111∧A∧B∧C∧D∧E∧F

Так как Fж(000000) = 1, то С000000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 0 => С100000 = 1 ⊕ 0 = 1
Fж(010000) = С000000 ⊕ С010000 = 0 => С010000 = 1 ⊕ 0 = 1
Fж(001000) = С000000 ⊕ С001000 = 1 => С001000 = 1 ⊕ 1 = 0
Fж(000100) = С000000 ⊕ С000100 = 1 => С000100 = 1 ⊕ 1 = 0
Fж(000010) = С000000 ⊕ С000010 = 1 => С000010 = 1 ⊕ 1 = 0
Fж(000001) = С000000 ⊕ С000001 = 1 => С000001 = 1 ⊕ 1 = 0
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 1 => С110000 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 0 => С101000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 0 => С100100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 0 => С100010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 0 => С100001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 1 => С011000 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 0 => С010100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 0 => С010010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 0 => С010001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 1 => С001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 1 => С001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 1 => С001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 0 => С000110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 1 => С000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 1 => С000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 0 => С111000 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 1 => С110100 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 1 => С110010 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 1 => С110001 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 0 => С101100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 0 => С101010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 0 => С101001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 0 => С100110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 0 => С100101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 0 => С100011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 1 => С011100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 0 => С010110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 0 => С010101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 0 => С010011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 0 => С001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 1 => С001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 1 => С001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 1 => С000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 0 => С111100 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 0 => С111010 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 0 => С111001 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 0 => С110110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 1 => С110101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 1 => С110011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 0 => С101110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 0 => С101101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 0 => С101011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 0 => С100111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 0 => С011110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 1 => С011101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 1 => С011011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 0 => С010111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 1 => С001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 0 => С111110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 0 => С111101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 0 => С111011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 1 => С110111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 0 => С101111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 1 => С011111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 0 => С111111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B ⊕ B∧C ⊕ D∧E ⊕ A∧D∧E ⊕ B∧D∧E ⊕ D∧E∧F ⊕ A∧D∧E∧F ⊕ B∧C∧D∧E ⊕ B∧D∧E∧F ⊕ B∧C∧D∧E∧F
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы