Таблица истинности для функции X∧(¬Y)∨¬X∧Z:


Промежуточные таблицы истинности:
¬Y:
Y¬Y
01
10

¬X:
X¬X
01
10

X∧(¬Y):
XY¬YX∧(¬Y)
0010
0100
1011
1100

(¬X)∧Z:
XZ¬X(¬X)∧Z
0010
0111
1000
1100

(X∧(¬Y))∨((¬X)∧Z):
XYZ¬YX∧(¬Y)¬X(¬X)∧Z(X∧(¬Y))∨((¬X)∧Z)
00010100
00110111
01000100
01100111
10011001
10111001
11000000
11100000

Общая таблица истинности:

XYZ¬Y¬XX∧(¬Y)(¬X)∧ZX∧(¬Y)∨¬X∧Z
00011000
00111011
01001000
01101011
10010101
10110101
11000000
11100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0011
0100
0111
1001
1011
1100
1110
Fсднф = ¬X∧¬Y∧Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0011
0100
0111
1001
1011
1100
1110
Fскнф = (X∨Y∨Z) ∧ (X∨¬Y∨Z) ∧ (¬X∨¬Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0011
0100
0111
1001
1011
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ Z ⊕ X∧Y ⊕ X∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы