Таблица истинности для функции (A∨¬A∧¬B∧¬C)∧B∨B∧(A∨B∨C):
Промежуточные таблицы истинности:
¬A:
¬B:
¬C:
(¬A)∧(¬B):
((¬A)∧(¬B))∧(¬C):
A∨(((¬A)∧(¬B))∧(¬C)):
A∨B:
(A∨B)∨C:
(A∨(((¬A)∧(¬B))∧(¬C)))∧B:
B∧((A∨B)∨C):
((A∨(((¬A)∧(¬B))∧(¬C)))∧B)∨(B∧((A∨B)∨C)):
Общая таблица истинности:
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:Fсднф = ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C
Так как Fж(000) = 0, то С000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Таким образом, полином Жегалкина будет равен:
Fж = B
Логическая схема, соответствующая полиному Жегалкина: