Таблица истинности для функции F≡A∧(B∨¬C∧C):


Промежуточные таблицы истинности:
¬C:
C¬C
01
10

(¬C)∧C:
C¬C(¬C)∧C
010
100

B∨((¬C)∧C):
BC¬C(¬C)∧CB∨((¬C)∧C)
00100
01000
10101
11001

A∧(B∨((¬C)∧C)):
ABC¬C(¬C)∧CB∨((¬C)∧C)A∧(B∨((¬C)∧C))
0001000
0010000
0101010
0110010
1001000
1010000
1101011
1110011

F≡(A∧(B∨((¬C)∧C))):
FABC¬C(¬C)∧CB∨((¬C)∧C)A∧(B∨((¬C)∧C))F≡(A∧(B∨((¬C)∧C)))
000010001
000100001
001010101
001100101
010010001
010100001
011010110
011100110
100010000
100100000
101010100
101100100
110010000
110100000
111010111
111100111

Общая таблица истинности:

FABC¬C(¬C)∧CB∨((¬C)∧C)A∧(B∨((¬C)∧C))F≡A∧(B∨¬C∧C)
000010001
000100001
001010101
001100101
010010001
010100001
011010110
011100110
100010000
100100000
101010100
101100100
110010000
110100000
111010111
111100111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FABCF
00001
00011
00101
00111
01001
01011
01100
01110
10000
10010
10100
10110
11000
11010
11101
11111
Fсднф = ¬F∧¬A∧¬B∧¬C ∨ ¬F∧¬A∧¬B∧C ∨ ¬F∧¬A∧B∧¬C ∨ ¬F∧¬A∧B∧C ∨ ¬F∧A∧¬B∧¬C ∨ ¬F∧A∧¬B∧C ∨ F∧A∧B∧¬C ∨ F∧A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FABCF
00001
00011
00101
00111
01001
01011
01100
01110
10000
10010
10100
10110
11000
11010
11101
11111
Fскнф = (F∨¬A∨¬B∨C) ∧ (F∨¬A∨¬B∨¬C) ∧ (¬F∨A∨B∨C) ∧ (¬F∨A∨B∨¬C) ∧ (¬F∨A∨¬B∨C) ∧ (¬F∨A∨¬B∨¬C) ∧ (¬F∨¬A∨B∨C) ∧ (¬F∨¬A∨B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FABCFж
00001
00011
00101
00111
01001
01011
01100
01110
10000
10010
10100
10110
11000
11010
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧F ⊕ C0100∧A ⊕ C0010∧B ⊕ C0001∧C ⊕ C1100∧F∧A ⊕ C1010∧F∧B ⊕ C1001∧F∧C ⊕ C0110∧A∧B ⊕ C0101∧A∧C ⊕ C0011∧B∧C ⊕ C1110∧F∧A∧B ⊕ C1101∧F∧A∧C ⊕ C1011∧F∧B∧C ⊕ C0111∧A∧B∧C ⊕ C1111∧F∧A∧B∧C

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 1 ⊕ 0 = 1
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 1 ⊕ 1 = 0
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ F ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы