Промежуточные таблицы истинности:X1∧X2:
(X1∧X2)∧X3:
X1 | X2 | X3 | X1∧X2 | (X1∧X2)∧X3 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
¬X1:
¬X2:
¬X3:
F∧((X1∧X2)∧X3):
F | X1 | X2 | X3 | X1∧X2 | (X1∧X2)∧X3 | F∧((X1∧X2)∧X3) |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
(¬X1)∧(¬X2):
X1 | X2 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 0 |
((¬X1)∧(¬X2))∧(¬X3):
X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
X1∧(¬X2):
X1 | X2 | ¬X2 | X1∧(¬X2) |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
(X1∧(¬X2))∧X3:
X1 | X2 | X3 | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
(X1∧X2)∧(¬X3):
X1 | X2 | X3 | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 |
(((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3):
X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 | (((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3) |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3)):
X1 | X2 | X3 | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 | (((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3) | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ((((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3)) |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
(F∧((X1∧X2)∧X3))≡(((((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3))):
F | X1 | X2 | X3 | X1∧X2 | (X1∧X2)∧X3 | F∧((X1∧X2)∧X3) | ¬X1 | ¬X2 | (¬X1)∧(¬X2) | ¬X3 | ((¬X1)∧(¬X2))∧(¬X3) | ¬X2 | X1∧(¬X2) | (X1∧(¬X2))∧X3 | (((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3) | X1∧X2 | ¬X3 | (X1∧X2)∧(¬X3) | ((((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3)) | (F∧((X1∧X2)∧X3))≡(((((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3))) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Общая таблица истинности:
F | X1 | X2 | X3 | X1∧X2 | (X1∧X2)∧X3 | ¬X1 | ¬X2 | ¬X3 | F∧((X1∧X2)∧X3) | (¬X1)∧(¬X2) | ((¬X1)∧(¬X2))∧(¬X3) | X1∧(¬X2) | (X1∧(¬X2))∧X3 | (X1∧X2)∧(¬X3) | (((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3) | ((((¬X1)∧(¬X2))∧(¬X3))∨((X1∧(¬X2))∧X3))∨((X1∧X2)∧(¬X3)) | F∧(X1∧X2∧X3)≡¬X1∧¬X2∧¬X3∨X1∧¬X2∧X3∨X1∧X2∧¬X3 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
F | X1 | X2 | X3 | F |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 |
F
сднф = ¬F∧¬X1∧¬X2∧X3 ∨ ¬F∧¬X1∧X2∧¬X3 ∨ ¬F∧¬X1∧X2∧X3 ∨ ¬F∧X1∧¬X2∧¬X3 ∨ ¬F∧X1∧X2∧X3 ∨ F∧¬X1∧¬X2∧X3 ∨ F∧¬X1∧X2∧¬X3 ∨ F∧¬X1∧X2∧X3 ∨ F∧X1∧¬X2∧¬X3
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
F | X1 | X2 | X3 | F |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 |
F
скнф = (F∨X1∨X2∨X3) ∧ (F∨¬X1∨X2∨¬X3) ∧ (F∨¬X1∨¬X2∨X3) ∧ (¬F∨X1∨X2∨X3) ∧ (¬F∨¬X1∨X2∨¬X3) ∧ (¬F∨¬X1∨¬X2∨X3) ∧ (¬F∨¬X1∨¬X2∨¬X3)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
F | X1 | X2 | X3 | Fж |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина:
F
ж = C
0000 ⊕ C
1000∧F ⊕ C
0100∧X1 ⊕ C
0010∧X2 ⊕ C
0001∧X3 ⊕ C
1100∧F∧X1 ⊕ C
1010∧F∧X2 ⊕ C
1001∧F∧X3 ⊕ C
0110∧X1∧X2 ⊕ C
0101∧X1∧X3 ⊕ C
0011∧X2∧X3 ⊕ C
1110∧F∧X1∧X2 ⊕ C
1101∧F∧X1∧X3 ⊕ C
1011∧F∧X2∧X3 ⊕ C
0111∧X1∧X2∧X3 ⊕ C
1111∧F∧X1∧X2∧X3
Так как F
ж(0000) = 0, то С
0000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(1000) = С
0000 ⊕ С
1000 = 0 => С
1000 = 0 ⊕ 0 = 0
F
ж(0100) = С
0000 ⊕ С
0100 = 1 => С
0100 = 0 ⊕ 1 = 1
F
ж(0010) = С
0000 ⊕ С
0010 = 1 => С
0010 = 0 ⊕ 1 = 1
F
ж(0001) = С
0000 ⊕ С
0001 = 1 => С
0001 = 0 ⊕ 1 = 1
F
ж(1100) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
1100 = 1 => С
1100 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(1010) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
1010 = 1 => С
1010 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(1001) = С
0000 ⊕ С
1000 ⊕ С
0001 ⊕ С
1001 = 1 => С
1001 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(0110) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0110 = 0 => С
0110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
F
ж(0101) = С
0000 ⊕ С
0100 ⊕ С
0001 ⊕ С
0101 = 0 => С
0101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
F
ж(0011) = С
0000 ⊕ С
0010 ⊕ С
0001 ⊕ С
0011 = 1 => С
0011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
F
ж(1110) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
1100 ⊕ С
1010 ⊕ С
0110 ⊕ С
1110 = 0 => С
1110 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(1101) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0001 ⊕ С
1100 ⊕ С
1001 ⊕ С
0101 ⊕ С
1101 = 0 => С
1101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(1011) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
0001 ⊕ С
1010 ⊕ С
1001 ⊕ С
0011 ⊕ С
1011 = 1 => С
1011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
F
ж(0111) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
0111 = 1 => С
0111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
F
ж(1111) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
1100 ⊕ С
1010 ⊕ С
1001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
1110 ⊕ С
1101 ⊕ С
1011 ⊕ С
0111 ⊕ С
1111 = 0 => С
1111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Таким образом, полином Жегалкина будет равен:
F
ж = X1 ⊕ X2 ⊕ X3 ⊕ X2∧X3 ⊕ X1∧X2∧X3 ⊕ F∧X1∧X2∧X3
Логическая схема, соответствующая полиному Жегалкина: