Таблица истинности для функции A∨B∨C∧D→(¬A∧B∧C∧D):


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

(¬A)∧B:
AB¬A(¬A)∧B
0010
0111
1000
1100

((¬A)∧B)∧C:
ABC¬A(¬A)∧B((¬A)∧B)∧C
000100
001100
010110
011111
100000
101000
110000
111000

(((¬A)∧B)∧C)∧D:
ABCD¬A(¬A)∧B((¬A)∧B)∧C(((¬A)∧B)∧C)∧D
00001000
00011000
00101000
00111000
01001100
01011100
01101110
01111111
10000000
10010000
10100000
10110000
11000000
11010000
11100000
11110000

C∧D:
CDC∧D
000
010
100
111

A∨B:
ABA∨B
000
011
101
111

(A∨B)∨(C∧D):
ABCDA∨BC∧D(A∨B)∨(C∧D)
0000000
0001000
0010000
0011011
0100101
0101101
0110101
0111111
1000101
1001101
1010101
1011111
1100101
1101101
1110101
1111111

((A∨B)∨(C∧D))→((((¬A)∧B)∧C)∧D):
ABCDA∨BC∧D(A∨B)∨(C∧D)¬A(¬A)∧B((¬A)∧B)∧C(((¬A)∧B)∧C)∧D((A∨B)∨(C∧D))→((((¬A)∧B)∧C)∧D)
000000010001
000100010001
001000010001
001101110000
010010111000
010110111000
011010111100
011111111111
100010100000
100110100000
101010100000
101111100000
110010100000
110110100000
111010100000
111111100000

Общая таблица истинности:

ABCD¬A(¬A)∧B((¬A)∧B)∧C(((¬A)∧B)∧C)∧DC∧DA∨B(A∨B)∨(C∧D)A∨B∨C∧D→(¬A∧B∧C∧D)
000010000001
000110000001
001010000001
001110001010
010011000110
010111000110
011011100110
011111111111
100000000110
100100000110
101000000110
101100001110
110000000110
110100000110
111000000110
111100001110

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00110
01000
01010
01100
01111
10000
10010
10100
10110
11000
11010
11100
11110
Fсднф = ¬A∧¬B∧¬C∧¬D ∨ ¬A∧¬B∧¬C∧D ∨ ¬A∧¬B∧C∧¬D ∨ ¬A∧B∧C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00110
01000
01010
01100
01111
10000
10010
10100
10110
11000
11010
11100
11110
Fскнф = (A∨B∨¬C∨¬D) ∧ (A∨¬B∨C∨D) ∧ (A∨¬B∨C∨¬D) ∧ (A∨¬B∨¬C∨D) ∧ (¬A∨B∨C∨D) ∧ (¬A∨B∨C∨¬D) ∧ (¬A∨B∨¬C∨D) ∧ (¬A∨B∨¬C∨¬D) ∧ (¬A∨¬B∨C∨D) ∧ (¬A∨¬B∨C∨¬D) ∧ (¬A∨¬B∨¬C∨D) ∧ (¬A∨¬B∨¬C∨¬D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDFж
00001
00011
00101
00110
01000
01010
01100
01111
10000
10010
10100
10110
11000
11010
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧D

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 1 ⊕ 0 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B ⊕ A∧B ⊕ C∧D ⊕ A∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы