Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬(P→¬(R∧Q))≡¬(P∨(P∧¬(Q→R))):
Промежуточные таблицы истинности:R∧Q: ¬(R∧Q): R | Q | R∧Q | ¬(R∧Q) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
P→(¬(R∧Q)): P | R | Q | R∧Q | ¬(R∧Q) | P→(¬(R∧Q)) | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Q→R: ¬(Q→R): Q | R | Q→R | ¬(Q→R) | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
P∧(¬(Q→R)): P | Q | R | Q→R | ¬(Q→R) | P∧(¬(Q→R)) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
P∨(P∧(¬(Q→R))): P | Q | R | Q→R | ¬(Q→R) | P∧(¬(Q→R)) | P∨(P∧(¬(Q→R))) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
¬(P→(¬(R∧Q))): P | R | Q | R∧Q | ¬(R∧Q) | P→(¬(R∧Q)) | ¬(P→(¬(R∧Q))) | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
¬(P∨(P∧(¬(Q→R)))): P | Q | R | Q→R | ¬(Q→R) | P∧(¬(Q→R)) | P∨(P∧(¬(Q→R))) | ¬(P∨(P∧(¬(Q→R)))) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
(¬(P→(¬(R∧Q))))≡(¬(P∨(P∧(¬(Q→R))))): P | R | Q | R∧Q | ¬(R∧Q) | P→(¬(R∧Q)) | ¬(P→(¬(R∧Q))) | Q→R | ¬(Q→R) | P∧(¬(Q→R)) | P∨(P∧(¬(Q→R))) | ¬(P∨(P∧(¬(Q→R)))) | (¬(P→(¬(R∧Q))))≡(¬(P∨(P∧(¬(Q→R))))) | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
Общая таблица истинности:P | R | Q | R∧Q | ¬(R∧Q) | P→(¬(R∧Q)) | Q→R | ¬(Q→R) | P∧(¬(Q→R)) | P∨(P∧(¬(Q→R))) | ¬(P→(¬(R∧Q))) | ¬(P∨(P∧(¬(Q→R)))) | ¬(P→¬(R∧Q))≡¬(P∨(P∧¬(Q→R))) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: P | R | Q | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = P∧¬R∧¬Q ∨ P∧¬R∧Q ∨ P∧R∧¬Q Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: P | R | Q | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (P∨R∨Q) ∧ (P∨R∨¬Q) ∧ (P∨¬R∨Q) ∧ (P∨¬R∨¬Q) ∧ (¬P∨¬R∨¬Q) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции P | R | Q | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧P ⊕ C 010∧R ⊕ C 001∧Q ⊕ C 110∧P∧R ⊕ C 101∧P∧Q ⊕ C 011∧R∧Q ⊕ C 111∧P∧R∧Q Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 1 => С 100 = 0 ⊕ 1 = 1 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 0 ⊕ 0 = 0 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 0 ⊕ 0 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: F ж = P ⊕ P∧R∧Q Логическая схема, соответствующая полиному Жегалкина:
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|