Таблица истинности для функции ¬(A↓¬B∨B∧¬C∧D):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

¬C:
C¬C
01
10

A↓(¬B):
AB¬BA↓(¬B)
0010
0101
1010
1100

B∧(¬C):
BC¬CB∧(¬C)
0010
0100
1011
1100

(B∧(¬C))∧D:
BCD¬CB∧(¬C)(B∧(¬C))∧D
000100
001100
010000
011000
100110
101111
110000
111000

(A↓(¬B))∨((B∧(¬C))∧D):
ABCD¬BA↓(¬B)¬CB∧(¬C)(B∧(¬C))∧D(A↓(¬B))∨((B∧(¬C))∧D)
0000101000
0001101000
0010100000
0011100000
0100011101
0101011111
0110010001
0111010001
1000101000
1001101000
1010100000
1011100000
1100001100
1101001111
1110000000
1111000000

¬((A↓(¬B))∨((B∧(¬C))∧D)):
ABCD¬BA↓(¬B)¬CB∧(¬C)(B∧(¬C))∧D(A↓(¬B))∨((B∧(¬C))∧D)¬((A↓(¬B))∨((B∧(¬C))∧D))
00001010001
00011010001
00101000001
00111000001
01000111010
01010111110
01100100010
01110100010
10001010001
10011010001
10101000001
10111000001
11000011001
11010011110
11100000001
11110000001

Общая таблица истинности:

ABCD¬B¬CA↓(¬B)B∧(¬C)(B∧(¬C))∧D(A↓(¬B))∨((B∧(¬C))∧D)¬(A↓¬B∨B∧¬C∧D)
00001100001
00011100001
00101000001
00111000001
01000111010
01010111110
01100010010
01110010010
10001100001
10011100001
10101000001
10111000001
11000101001
11010101110
11100000001
11110000001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00111
01000
01010
01100
01110
10001
10011
10101
10111
11001
11010
11101
11111
Fсднф = ¬A∧¬B∧¬C∧¬D ∨ ¬A∧¬B∧¬C∧D ∨ ¬A∧¬B∧C∧¬D ∨ ¬A∧¬B∧C∧D ∨ A∧¬B∧¬C∧¬D ∨ A∧¬B∧¬C∧D ∨ A∧¬B∧C∧¬D ∨ A∧¬B∧C∧D ∨ A∧B∧¬C∧¬D ∨ A∧B∧C∧¬D ∨ A∧B∧C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00111
01000
01010
01100
01110
10001
10011
10101
10111
11001
11010
11101
11111
Fскнф = (A∨¬B∨C∨D) ∧ (A∨¬B∨C∨¬D) ∧ (A∨¬B∨¬C∨D) ∧ (A∨¬B∨¬C∨¬D) ∧ (¬A∨¬B∨C∨¬D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDFж
00001
00011
00101
00111
01000
01010
01100
01110
10001
10011
10101
10111
11001
11010
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧D

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ A∧B ⊕ A∧B∧D ⊕ A∧B∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы