Таблица истинности для функции A∨(¬A∨B∨¬C)∧B:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬C:
C¬C
01
10

(¬A)∨B:
AB¬A(¬A)∨B
0011
0111
1000
1101

((¬A)∨B)∨(¬C):
ABC¬A(¬A)∨B¬C((¬A)∨B)∨(¬C)
0001111
0011101
0101111
0111101
1000011
1010000
1100111
1110101

(((¬A)∨B)∨(¬C))∧B:
ABC¬A(¬A)∨B¬C((¬A)∨B)∨(¬C)(((¬A)∨B)∨(¬C))∧B
00011110
00111010
01011111
01111011
10000110
10100000
11001111
11101011

A∨((((¬A)∨B)∨(¬C))∧B):
ABC¬A(¬A)∨B¬C((¬A)∨B)∨(¬C)(((¬A)∨B)∨(¬C))∧BA∨((((¬A)∨B)∨(¬C))∧B)
000111100
001110100
010111111
011110111
100001101
101000001
110011111
111010111

Общая таблица истинности:

ABC¬A¬C(¬A)∨B((¬A)∨B)∨(¬C)(((¬A)∨B)∨(¬C))∧BA∨(¬A∨B∨¬C)∧B
000111100
001101100
010111111
011101111
100010101
101000001
110011111
111001111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0101
0111
1001
1011
1101
1111
Fсднф = ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0101
0111
1001
1011
1101
1111
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ B ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы