Таблица истинности для функции A∨B→A≡B:
Промежуточные таблицы истинности:
A∨B:
(A∨B)→A:
((A∨B)→A)≡B:
Общая таблица истинности:
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:Fсднф = A∧B
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:Fскнф = (A∨B) ∧ (A∨¬B) ∧ (¬A∨B)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B
Так как Fж(00) = 0, то С00 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 0 ⊕ 0 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Таким образом, полином Жегалкина будет равен:
Fж = A∧B
Логическая схема, соответствующая полиному Жегалкина: