Таблица истинности для функции ¬(X∧Y)→¬(X|Z):


Промежуточные таблицы истинности:
X∧Y:
XYX∧Y
000
010
100
111

X|Z:
XZX|Z
001
011
101
110

¬(X∧Y):
XYX∧Y¬(X∧Y)
0001
0101
1001
1110

¬(X|Z):
XZX|Z¬(X|Z)
0010
0110
1010
1101

(¬(X∧Y))→(¬(X|Z)):
XYZX∧Y¬(X∧Y)X|Z¬(X|Z)(¬(X∧Y))→(¬(X|Z))
00001100
00101100
01001100
01101100
10001100
10101011
11010101
11110011

Общая таблица истинности:

XYZX∧YX|Z¬(X∧Y)¬(X|Z)¬(X∧Y)→¬(X|Z)
00001100
00101100
01001100
01101100
10001100
10100111
11011001
11110011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0010
0100
0110
1000
1011
1101
1111
Fсднф = X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0010
0100
0110
1000
1011
1101
1111
Fскнф = (X∨Y∨Z) ∧ (X∨Y∨¬Z) ∧ (X∨¬Y∨Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0010
0100
0110
1000
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X∧Y ⊕ X∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы