Таблица истинности для функции F≡A∧B→B∧C:


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

B∧C:
BCB∧C
000
010
100
111

(A∧B)→(B∧C):
ABCA∧BB∧C(A∧B)→(B∧C)
000001
001001
010001
011011
100001
101001
110100
111111

F≡((A∧B)→(B∧C)):
FABCA∧BB∧C(A∧B)→(B∧C)F≡((A∧B)→(B∧C))
00000010
00010010
00100010
00110110
01000010
01010010
01101001
01111110
10000011
10010011
10100011
10110111
11000011
11010011
11101000
11111111

Общая таблица истинности:

FABCA∧BB∧C(A∧B)→(B∧C)F≡A∧B→B∧C
00000010
00010010
00100010
00110110
01000010
01010010
01101001
01111110
10000011
10010011
10100011
10110111
11000011
11010011
11101000
11111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FABCF
00000
00010
00100
00110
01000
01010
01101
01110
10001
10011
10101
10111
11001
11011
11100
11111
Fсднф = ¬F∧A∧B∧¬C ∨ F∧¬A∧¬B∧¬C ∨ F∧¬A∧¬B∧C ∨ F∧¬A∧B∧¬C ∨ F∧¬A∧B∧C ∨ F∧A∧¬B∧¬C ∨ F∧A∧¬B∧C ∨ F∧A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FABCF
00000
00010
00100
00110
01000
01010
01101
01110
10001
10011
10101
10111
11001
11011
11100
11111
Fскнф = (F∨A∨B∨C) ∧ (F∨A∨B∨¬C) ∧ (F∨A∨¬B∨C) ∧ (F∨A∨¬B∨¬C) ∧ (F∨¬A∨B∨C) ∧ (F∨¬A∨B∨¬C) ∧ (F∨¬A∨¬B∨¬C) ∧ (¬F∨¬A∨¬B∨C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FABCFж
00000
00010
00100
00110
01000
01010
01101
01110
10001
10011
10101
10111
11001
11011
11100
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧F ⊕ C0100∧A ⊕ C0010∧B ⊕ C0001∧C ⊕ C1100∧F∧A ⊕ C1010∧F∧B ⊕ C1001∧F∧C ⊕ C0110∧A∧B ⊕ C0101∧A∧C ⊕ C0011∧B∧C ⊕ C1110∧F∧A∧B ⊕ C1101∧F∧A∧C ⊕ C1011∧F∧B∧C ⊕ C0111∧A∧B∧C ⊕ C1111∧F∧A∧B∧C

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 0 ⊕ 1 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 0 ⊕ 0 = 0
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = F ⊕ A∧B ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2023, Список Литературы