Таблица истинности для функции (¬X|¬Y)→(Y∧Z∨X∧Z):


Промежуточные таблицы истинности:
¬X:
X¬X
01
10

¬Y:
Y¬Y
01
10

(¬X)|(¬Y):
XY¬X¬Y(¬X)|(¬Y)
00110
01101
10011
11001

Y∧Z:
YZY∧Z
000
010
100
111

X∧Z:
XZX∧Z
000
010
100
111

(Y∧Z)∨(X∧Z):
YZXY∧ZX∧Z(Y∧Z)∨(X∧Z)
000000
001000
010000
011011
100000
101000
110101
111111

((¬X)|(¬Y))→((Y∧Z)∨(X∧Z)):
XYZ¬X¬Y(¬X)|(¬Y)Y∧ZX∧Z(Y∧Z)∨(X∧Z)((¬X)|(¬Y))→((Y∧Z)∨(X∧Z))
0001100001
0011100001
0101010000
0111011011
1000110000
1010110111
1100010000
1110011111

Общая таблица истинности:

XYZ¬X¬Y(¬X)|(¬Y)Y∧ZX∧Z(Y∧Z)∨(X∧Z)(¬X|¬Y)→(Y∧Z∨X∧Z)
0001100001
0011100001
0101010000
0111011011
1000110000
1010110111
1100010000
1110011111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0011
0100
0111
1000
1011
1100
1111
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0011
0100
0111
1000
1011
1100
1111
Fскнф = (X∨¬Y∨Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨¬Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0011
0100
0111
1000
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X ⊕ Y ⊕ X∧Y ⊕ X∧Z ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы