Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (X1↓X3)∧X1∧X3∧(X1⊕X2)∨(X3|X2):
Промежуточные таблицы истинности:X1↓X3: X1⊕X2: X3|X2: (X1↓X3)∧X1: X1 | X3 | X1↓X3 | (X1↓X3)∧X1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((X1↓X3)∧X1)∧X3: X1 | X3 | X1↓X3 | (X1↓X3)∧X1 | ((X1↓X3)∧X1)∧X3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
(((X1↓X3)∧X1)∧X3)∧(X1⊕X2): X1 | X3 | X2 | X1↓X3 | (X1↓X3)∧X1 | ((X1↓X3)∧X1)∧X3 | X1⊕X2 | (((X1↓X3)∧X1)∧X3)∧(X1⊕X2) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
((((X1↓X3)∧X1)∧X3)∧(X1⊕X2))∨(X3|X2): X1 | X3 | X2 | X1↓X3 | (X1↓X3)∧X1 | ((X1↓X3)∧X1)∧X3 | X1⊕X2 | (((X1↓X3)∧X1)∧X3)∧(X1⊕X2) | X3|X2 | ((((X1↓X3)∧X1)∧X3)∧(X1⊕X2))∨(X3|X2) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Общая таблица истинности:X1 | X3 | X2 | X1↓X3 | X1⊕X2 | X3|X2 | (X1↓X3)∧X1 | ((X1↓X3)∧X1)∧X3 | (((X1↓X3)∧X1)∧X3)∧(X1⊕X2) | (X1↓X3)∧X1∧X3∧(X1⊕X2)∨(X3|X2) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X1 | X3 | X2 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬X1∧¬X3∧¬X2 ∨ ¬X1∧¬X3∧X2 ∨ ¬X1∧X3∧¬X2 ∨ X1∧¬X3∧¬X2 ∨ X1∧¬X3∧X2 ∨ X1∧X3∧¬X2 Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X1 | X3 | X2 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (X1∨¬X3∨¬X2) ∧ (¬X1∨¬X3∨¬X2) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X1 | X3 | X2 | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X1 ⊕ C 010∧X3 ⊕ C 001∧X2 ⊕ C 110∧X1∧X3 ⊕ C 101∧X1∧X2 ⊕ C 011∧X3∧X2 ⊕ C 111∧X1∧X3∧X2 Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 1 => С 100 = 1 ⊕ 1 = 0 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 1 ⊕ 1 = 0 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 1 ⊕ 1 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 1 => С 110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 1 => С 101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ X3∧X2 Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|