Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (¬P∧¬Q∧R)∧(¬P∧Q∧¬R)∧(P∧¬Q∧R)∧(P∧Q∧¬R):
Промежуточные таблицы истинности:¬P: ¬Q: (¬P)∧(¬Q): P | Q | ¬P | ¬Q | (¬P)∧(¬Q) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
((¬P)∧(¬Q))∧R: P | Q | R | ¬P | ¬Q | (¬P)∧(¬Q) | ((¬P)∧(¬Q))∧R | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
¬R: (¬P)∧Q: P | Q | ¬P | (¬P)∧Q | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((¬P)∧Q)∧(¬R): P | Q | R | ¬P | (¬P)∧Q | ¬R | ((¬P)∧Q)∧(¬R) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
P∧(¬Q): P | Q | ¬Q | P∧(¬Q) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
(P∧(¬Q))∧R: P | Q | R | ¬Q | P∧(¬Q) | (P∧(¬Q))∧R | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
P∧Q: (P∧Q)∧(¬R): P | Q | R | P∧Q | ¬R | (P∧Q)∧(¬R) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
(((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)): P | Q | R | ¬P | ¬Q | (¬P)∧(¬Q) | ((¬P)∧(¬Q))∧R | ¬P | (¬P)∧Q | ¬R | ((¬P)∧Q)∧(¬R) | (((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)))∧((P∧(¬Q))∧R): P | Q | R | ¬P | ¬Q | (¬P)∧(¬Q) | ((¬P)∧(¬Q))∧R | ¬P | (¬P)∧Q | ¬R | ((¬P)∧Q)∧(¬R) | (((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)) | ¬Q | P∧(¬Q) | (P∧(¬Q))∧R | ((((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)))∧((P∧(¬Q))∧R) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(((((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)))∧((P∧(¬Q))∧R))∧((P∧Q)∧(¬R)): P | Q | R | ¬P | ¬Q | (¬P)∧(¬Q) | ((¬P)∧(¬Q))∧R | ¬P | (¬P)∧Q | ¬R | ((¬P)∧Q)∧(¬R) | (((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)) | ¬Q | P∧(¬Q) | (P∧(¬Q))∧R | ((((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)))∧((P∧(¬Q))∧R) | P∧Q | ¬R | (P∧Q)∧(¬R) | (((((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)))∧((P∧(¬Q))∧R))∧((P∧Q)∧(¬R)) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Общая таблица истинности:P | Q | R | ¬P | ¬Q | (¬P)∧(¬Q) | ((¬P)∧(¬Q))∧R | ¬R | (¬P)∧Q | ((¬P)∧Q)∧(¬R) | P∧(¬Q) | (P∧(¬Q))∧R | P∧Q | (P∧Q)∧(¬R) | (((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)) | ((((¬P)∧(¬Q))∧R)∧(((¬P)∧Q)∧(¬R)))∧((P∧(¬Q))∧R) | (¬P∧¬Q∧R)∧(¬P∧Q∧¬R)∧(P∧¬Q∧R)∧(P∧Q∧¬R) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: P | Q | R | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
В таблице истинности нет набора значений переменных при которых функция истинна!
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: P | Q | R | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F скнф = (P∨Q∨R) ∧ (P∨Q∨¬R) ∧ (P∨¬Q∨R) ∧ (P∨¬Q∨¬R) ∧ (¬P∨Q∨R) ∧ (¬P∨Q∨¬R) ∧ (¬P∨¬Q∨R) ∧ (¬P∨¬Q∨¬R) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции P | Q | R | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧P ⊕ C 010∧Q ⊕ C 001∧R ⊕ C 110∧P∧Q ⊕ C 101∧P∧R ⊕ C 011∧Q∧R ⊕ C 111∧P∧Q∧R Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 0 ⊕ 0 = 0 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 0 ⊕ 0 = 0 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 0 ⊕ 0 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 0
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|