Таблица истинности для функции F≡(A∧V∧C)∧(B∧V∧A):


Промежуточные таблицы истинности:
A∧V:
AVA∧V
000
010
100
111

(A∧V)∧C:
AVCA∧V(A∧V)∧C
00000
00100
01000
01100
10000
10100
11010
11111

B∧V:
BVB∧V
000
010
100
111

(B∧V)∧A:
BVAB∧V(B∧V)∧A
00000
00100
01000
01100
10000
10100
11010
11111

((A∧V)∧C)∧((B∧V)∧A):
AVCBA∧V(A∧V)∧CB∧V(B∧V)∧A((A∧V)∧C)∧((B∧V)∧A)
000000000
000100000
001000000
001100000
010000000
010100100
011000000
011100100
100000000
100100000
101000000
101100000
110010000
110110110
111011000
111111111

F≡(((A∧V)∧C)∧((B∧V)∧A)):
FAVCBA∧V(A∧V)∧CB∧V(B∧V)∧A((A∧V)∧C)∧((B∧V)∧A)F≡(((A∧V)∧C)∧((B∧V)∧A))
00000000001
00001000001
00010000001
00011000001
00100000001
00101001001
00110000001
00111001001
01000000001
01001000001
01010000001
01011000001
01100100001
01101101101
01110110001
01111111110
10000000000
10001000000
10010000000
10011000000
10100000000
10101001000
10110000000
10111001000
11000000000
11001000000
11010000000
11011000000
11100100000
11101101100
11110110000
11111111111

Общая таблица истинности:

FAVCBA∧V(A∧V)∧CB∧V(B∧V)∧A((A∧V)∧C)∧((B∧V)∧A)F≡(A∧V∧C)∧(B∧V∧A)
00000000001
00001000001
00010000001
00011000001
00100000001
00101001001
00110000001
00111001001
01000000001
01001000001
01010000001
01011000001
01100100001
01101101101
01110110001
01111111110
10000000000
10001000000
10010000000
10011000000
10100000000
10101001000
10110000000
10111001000
11000000000
11001000000
11010000000
11011000000
11100100000
11101101100
11110110000
11111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FAVCBF
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011001
011011
011101
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111111
Fсднф = ¬F∧¬A∧¬V∧¬C∧¬B ∨ ¬F∧¬A∧¬V∧¬C∧B ∨ ¬F∧¬A∧¬V∧C∧¬B ∨ ¬F∧¬A∧¬V∧C∧B ∨ ¬F∧¬A∧V∧¬C∧¬B ∨ ¬F∧¬A∧V∧¬C∧B ∨ ¬F∧¬A∧V∧C∧¬B ∨ ¬F∧¬A∧V∧C∧B ∨ ¬F∧A∧¬V∧¬C∧¬B ∨ ¬F∧A∧¬V∧¬C∧B ∨ ¬F∧A∧¬V∧C∧¬B ∨ ¬F∧A∧¬V∧C∧B ∨ ¬F∧A∧V∧¬C∧¬B ∨ ¬F∧A∧V∧¬C∧B ∨ ¬F∧A∧V∧C∧¬B ∨ F∧A∧V∧C∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FAVCBF
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011001
011011
011101
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111111
Fскнф = (F∨¬A∨¬V∨¬C∨¬B) ∧ (¬F∨A∨V∨C∨B) ∧ (¬F∨A∨V∨C∨¬B) ∧ (¬F∨A∨V∨¬C∨B) ∧ (¬F∨A∨V∨¬C∨¬B) ∧ (¬F∨A∨¬V∨C∨B) ∧ (¬F∨A∨¬V∨C∨¬B) ∧ (¬F∨A∨¬V∨¬C∨B) ∧ (¬F∨A∨¬V∨¬C∨¬B) ∧ (¬F∨¬A∨V∨C∨B) ∧ (¬F∨¬A∨V∨C∨¬B) ∧ (¬F∨¬A∨V∨¬C∨B) ∧ (¬F∨¬A∨V∨¬C∨¬B) ∧ (¬F∨¬A∨¬V∨C∨B) ∧ (¬F∨¬A∨¬V∨C∨¬B) ∧ (¬F∨¬A∨¬V∨¬C∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FAVCBFж
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011001
011011
011101
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧F ⊕ C01000∧A ⊕ C00100∧V ⊕ C00010∧C ⊕ C00001∧B ⊕ C11000∧F∧A ⊕ C10100∧F∧V ⊕ C10010∧F∧C ⊕ C10001∧F∧B ⊕ C01100∧A∧V ⊕ C01010∧A∧C ⊕ C01001∧A∧B ⊕ C00110∧V∧C ⊕ C00101∧V∧B ⊕ C00011∧C∧B ⊕ C11100∧F∧A∧V ⊕ C11010∧F∧A∧C ⊕ C11001∧F∧A∧B ⊕ C10110∧F∧V∧C ⊕ C10101∧F∧V∧B ⊕ C10011∧F∧C∧B ⊕ C01110∧A∧V∧C ⊕ C01101∧A∧V∧B ⊕ C01011∧A∧C∧B ⊕ C00111∧V∧C∧B ⊕ C11110∧F∧A∧V∧C ⊕ C11101∧F∧A∧V∧B ⊕ C11011∧F∧A∧C∧B ⊕ C10111∧F∧V∧C∧B ⊕ C01111∧A∧V∧C∧B ⊕ C11111∧F∧A∧V∧C∧B

Так как Fж(00000) = 1, то С00000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 1 ⊕ 0 = 1
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 1 ⊕ 1 = 0
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 1 ⊕ 1 = 0
Fж(00010) = С00000 ⊕ С00010 = 1 => С00010 = 1 ⊕ 1 = 0
Fж(00001) = С00000 ⊕ С00001 = 1 => С00001 = 1 ⊕ 1 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 0 => С10010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 0 => С10001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 1 => С01100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 1 => С01001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 1 => С00110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 1 => С00011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 0 => С11001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 0 => С10110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 0 => С10011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 1 => С01110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 1 => С01101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 1 => С01011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 1 => С00111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 0 => С10111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ F ⊕ A∧V∧C∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы