Таблица истинности для функции (A∨B)∨(A|D)→(A↓C)∧A⊕1:


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

A|D:
ADA|D
001
011
101
110

A↓C:
ACA↓C
001
010
100
110

(A↓C)∧A:
ACA↓C(A↓C)∧A
0010
0100
1000
1100

(A∨B)∨(A|D):
ABDA∨BA|D(A∨B)∨(A|D)
000011
001011
010111
011111
100111
101101
110111
111101

((A↓C)∧A)⊕1:
ACA↓C(A↓C)∧A((A↓C)∧A)⊕1
00101
01001
10001
11001

((A∨B)∨(A|D))→(((A↓C)∧A)⊕1):
ABDCA∨BA|D(A∨B)∨(A|D)A↓C(A↓C)∧A((A↓C)∧A)⊕1((A∨B)∨(A|D))→(((A↓C)∧A)⊕1)
00000111011
00010110011
00100111011
00110110011
01001111011
01011110011
01101111011
01111110011
10001110011
10011110011
10101010011
10111010011
11001110011
11011110011
11101010011
11111010011

Общая таблица истинности:

ABDCA∨BA|DA↓C(A↓C)∧A(A∨B)∨(A|D)((A↓C)∧A)⊕1(A∨B)∨(A|D)→(A↓C)∧A⊕1
00000110111
00010100111
00100110111
00110100111
01001110111
01011100111
01101110111
01111100111
10001100111
10011100111
10101000111
10111000111
11001100111
11011100111
11101000111
11111000111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABDCF
00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111
Fсднф = ¬A∧¬B∧¬D∧¬C ∨ ¬A∧¬B∧¬D∧C ∨ ¬A∧¬B∧D∧¬C ∨ ¬A∧¬B∧D∧C ∨ ¬A∧B∧¬D∧¬C ∨ ¬A∧B∧¬D∧C ∨ ¬A∧B∧D∧¬C ∨ ¬A∧B∧D∧C ∨ A∧¬B∧¬D∧¬C ∨ A∧¬B∧¬D∧C ∨ A∧¬B∧D∧¬C ∨ A∧¬B∧D∧C ∨ A∧B∧¬D∧¬C ∨ A∧B∧¬D∧C ∨ A∧B∧D∧¬C ∨ A∧B∧D∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABDCF
00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
ABDCFж
00001
00011
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧D ⊕ C0001∧C ⊕ C1100∧A∧B ⊕ C1010∧A∧D ⊕ C1001∧A∧C ⊕ C0110∧B∧D ⊕ C0101∧B∧C ⊕ C0011∧D∧C ⊕ C1110∧A∧B∧D ⊕ C1101∧A∧B∧C ⊕ C1011∧A∧D∧C ⊕ C0111∧B∧D∧C ⊕ C1111∧A∧B∧D∧C

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 1 ⊕ 1 = 0
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы