Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции X1∧X2∨¬X1∧¬X3:
Промежуточные таблицы истинности:¬X1: ¬X3: X1∧X2: (¬X1)∧(¬X3): X1 | X3 | ¬X1 | ¬X3 | (¬X1)∧(¬X3) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
(X1∧X2)∨((¬X1)∧(¬X3)): X1 | X2 | X3 | X1∧X2 | ¬X1 | ¬X3 | (¬X1)∧(¬X3) | (X1∧X2)∨((¬X1)∧(¬X3)) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
Общая таблица истинности:X1 | X2 | X3 | ¬X1 | ¬X3 | X1∧X2 | (¬X1)∧(¬X3) | X1∧X2∨¬X1∧¬X3 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F сднф = ¬X1∧¬X2∧¬X3 ∨ ¬X1∧X2∧¬X3 ∨ X1∧X2∧¬X3 ∨ X1∧X2∧X3 Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
F скнф = (X1∨X2∨¬X3) ∧ (X1∨¬X2∨¬X3) ∧ (¬X1∨X2∨X3) ∧ (¬X1∨X2∨¬X3) Логическая cхема:
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|