Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции X≡(Y→¬X∨(X≡¬Y)):
Промежуточные таблицы истинности:¬Y: X≡(¬Y): X | Y | ¬Y | X≡(¬Y) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
¬X: (¬X)∨(X≡(¬Y)): X | Y | ¬X | ¬Y | X≡(¬Y) | (¬X)∨(X≡(¬Y)) | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Y→((¬X)∨(X≡(¬Y))): Y | X | ¬X | ¬Y | X≡(¬Y) | (¬X)∨(X≡(¬Y)) | Y→((¬X)∨(X≡(¬Y))) | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
X≡(Y→((¬X)∨(X≡(¬Y)))): X | Y | ¬X | ¬Y | X≡(¬Y) | (¬X)∨(X≡(¬Y)) | Y→((¬X)∨(X≡(¬Y))) | X≡(Y→((¬X)∨(X≡(¬Y)))) | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Общая таблица истинности:X | Y | ¬Y | X≡(¬Y) | ¬X | (¬X)∨(X≡(¬Y)) | Y→((¬X)∨(X≡(¬Y))) | X≡(Y→¬X∨(X≡¬Y)) | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: F сднф = X∧¬Y Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: F скнф = (X∨Y) ∧ (X∨¬Y) ∧ (¬X∨¬Y) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции Построим полином Жегалкина: F ж = C 00 ⊕ C 10∧X ⊕ C 01∧Y ⊕ C 11∧X∧Y Так как F ж(00) = 0, то С 00 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(10) = С 00 ⊕ С 10 = 1 => С 10 = 0 ⊕ 1 = 1 F ж(01) = С 00 ⊕ С 01 = 0 => С 01 = 0 ⊕ 0 = 0 F ж(11) = С 00 ⊕ С 10 ⊕ С 01 ⊕ С 11 = 0 => С 11 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: F ж = X ⊕ X∧Y Логическая схема, соответствующая полиному Жегалкина:
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|