Таблица истинности для функции ¬(X∧Y∨¬Z):


Промежуточные таблицы истинности:
¬Z:
Z¬Z
01
10

X∧Y:
XYX∧Y
000
010
100
111

(X∧Y)∨(¬Z):
XYZX∧Y¬Z(X∧Y)∨(¬Z)
000011
001000
010011
011000
100011
101000
110111
111101

¬((X∧Y)∨(¬Z)):
XYZX∧Y¬Z(X∧Y)∨(¬Z)¬((X∧Y)∨(¬Z))
0000110
0010001
0100110
0110001
1000110
1010001
1101110
1111010

Общая таблица истинности:

XYZ¬ZX∧Y(X∧Y)∨(¬Z)¬(X∧Y∨¬Z)
0001010
0010001
0101010
0110001
1001010
1010001
1101110
1110110

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0011
0100
0111
1000
1011
1100
1110
Fсднф = ¬X∧¬Y∧Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0011
0100
0111
1000
1011
1100
1110
Fскнф = (X∨Y∨Z) ∧ (X∨¬Y∨Z) ∧ (¬X∨Y∨Z) ∧ (¬X∨¬Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0011
0100
0111
1000
1011
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы