Таблица истинности для функции (A→(B→C))→((A→B)→A→C):


Промежуточные таблицы истинности:
B→C:
BCB→C
001
011
100
111

A→(B→C):
ABCB→CA→(B→C)
00011
00111
01001
01111
10011
10111
11000
11111

A→B:
ABA→B
001
011
100
111

(A→B)→A:
ABA→B(A→B)→A
0010
0110
1001
1111

((A→B)→A)→C:
ABCA→B(A→B)→A((A→B)→A)→C
000101
001101
010101
011101
100010
101011
110110
111111

(A→(B→C))→(((A→B)→A)→C):
ABCB→CA→(B→C)A→B(A→B)→A((A→B)→A)→C(A→(B→C))→(((A→B)→A)→C)
000111011
001111011
010011011
011111011
100110100
101110111
110001101
111111111

Общая таблица истинности:

ABCB→CA→(B→C)A→B(A→B)→A((A→B)→A)→C(A→(B→C))→((A→B)→A→C)
000111011
001111011
010011011
011111011
100110100
101110111
110001101
111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0011
0101
0111
1000
1011
1101
1111
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0011
0101
0111
1000
1011
1101
1111
Fскнф = (¬A∨B∨C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0011
0101
0111
1000
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ A∧B ⊕ A∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы