Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (((X∨¬Z)↓X)⊕¬X)∧Y:
Промежуточные таблицы истинности:¬Z: X∨(¬Z): X | Z | ¬Z | X∨(¬Z) | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
(X∨(¬Z))↓X: X | Z | ¬Z | X∨(¬Z) | (X∨(¬Z))↓X | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
¬X: ((X∨(¬Z))↓X)⊕(¬X): X | Z | ¬Z | X∨(¬Z) | (X∨(¬Z))↓X | ¬X | ((X∨(¬Z))↓X)⊕(¬X) | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
(((X∨(¬Z))↓X)⊕(¬X))∧Y: X | Z | Y | ¬Z | X∨(¬Z) | (X∨(¬Z))↓X | ¬X | ((X∨(¬Z))↓X)⊕(¬X) | (((X∨(¬Z))↓X)⊕(¬X))∧Y | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
Общая таблица истинности:X | Z | Y | ¬Z | X∨(¬Z) | (X∨(¬Z))↓X | ¬X | ((X∨(¬Z))↓X)⊕(¬X) | (((X∨¬Z)↓X)⊕¬X)∧Y | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X | Z | Y | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F сднф = ¬X∧¬Z∧Y Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X | Z | Y | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F скнф = (X∨Z∨Y) ∧ (X∨¬Z∨Y) ∧ (X∨¬Z∨¬Y) ∧ (¬X∨Z∨Y) ∧ (¬X∨Z∨¬Y) ∧ (¬X∨¬Z∨Y) ∧ (¬X∨¬Z∨¬Y) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X | Z | Y | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧X ⊕ C 010∧Z ⊕ C 001∧Y ⊕ C 110∧X∧Z ⊕ C 101∧X∧Y ⊕ C 011∧Z∧Y ⊕ C 111∧X∧Z∧Y Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 0 ⊕ 0 = 0 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 0 ⊕ 0 = 0 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 0 ⊕ 1 = 1 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: F ж = Y ⊕ X∧Y ⊕ Z∧Y ⊕ X∧Z∧Y Логическая схема, соответствующая полиному Жегалкина:
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|