Таблица истинности для функции ((A≡B)→¬(A∧C))∧B:


Промежуточные таблицы истинности:
A≡B:
ABA≡B
001
010
100
111

A∧C:
ACA∧C
000
010
100
111

¬(A∧C):
ACA∧C¬(A∧C)
0001
0101
1001
1110

(A≡B)→(¬(A∧C)):
ABCA≡BA∧C¬(A∧C)(A≡B)→(¬(A∧C))
0001011
0011011
0100011
0110011
1000011
1010101
1101011
1111100

((A≡B)→(¬(A∧C)))∧B:
ABCA≡BA∧C¬(A∧C)(A≡B)→(¬(A∧C))((A≡B)→(¬(A∧C)))∧B
00010110
00110110
01000111
01100111
10000110
10101010
11010111
11111000

Общая таблица истинности:

ABCA≡BA∧C¬(A∧C)(A≡B)→(¬(A∧C))((A≡B)→¬(A∧C))∧B
00010110
00110110
01000111
01100111
10000110
10101010
11010111
11111000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0101
0111
1000
1010
1101
1110
Fсднф = ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧B∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0101
0111
1000
1010
1101
1110
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0101
0111
1000
1010
1101
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = B ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы