Таблица истинности для функции (A∨B∨C)→¬B:


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

(A∨B)∨C:
ABCA∨B(A∨B)∨C
00000
00101
01011
01111
10011
10111
11011
11111

¬B:
B¬B
01
10

((A∨B)∨C)→(¬B):
ABCA∨B(A∨B)∨C¬B((A∨B)∨C)→(¬B)
0000011
0010111
0101100
0111100
1001111
1011111
1101100
1111100

Общая таблица истинности:

ABCA∨B(A∨B)∨C¬B(A∨B∨C)→¬B
0000011
0010111
0101100
0111100
1001111
1011111
1101100
1111100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0011
0100
0110
1001
1011
1100
1110
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0011
0100
0110
1001
1011
1100
1110
Fскнф = (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0011
0100
0110
1001
1011
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы