Теоретическая механика

Каталог файлов для студентов >

Тарг С.М. 1988

Тарг С.М. 1989

Тарг С.М. 1989. Вариант 00 (рис. 0, условие 0), Тарг С.М. 1989. Вариант 01 (рис. 0, условие 1), Тарг С.М. 1989. Вариант 02 (рис. 0, условие 2), ...

Яблонский А.А. 1985

Решение задачи

ТАРГ 1989. Рисунок 9 (к решению задачи K4 вариант №8)

Груз 1 массой m укреплен на пружинной подвеске в лифте (рис. Д2.0 — Д2.9, табл. Д2). Лифт движется вертикально по закону z = 0,5α1t2 + α2sin(ωt) + α3cos(ωt) (ось z направлена по вертикали вверх; z выражено в метрах, t — в секундах). На груз действует сила сопротивления среды R = μv, где v — скорость груза по отношению к лифту. Найти закон движения груза по отношению к лифту, т. е. х = f(t); начало координат поместить в точке, где находится прикрепленный к грузу конец пружины, когда пружина не деформирована. При этом во избежание ошибок в знаках направить ось х в сторону удлинения пружины, а груз изобразить в положении, при котором х>0, т.е. пружина растянута. При подсчетах можно принять g = 10 м/с2. Массой пружин и соединительной планки 2 пренебречь. В таблице обозначено: c1, с2, c3 — коэффициенты жесткости пружин, λ0 — удлинение пружины с эквивалентной жесткостью в начальный момент времени t = 0, v0 — начальная скорость груза по отношению к лифту (направлена вертикально вверх). Прочерк в столбцах c1, с2, c3 означает, что соответствующая пружина отсутствует и на чертеже изображаться не должна. Если при этом конец одной из оставшихся пружин окажется свободным, его следует прикрепить в соответствующем месте или к грузу или к потолку (полу) лифта; то же следует сделать, если свободными окажутся соединенные планкой 2 концы обеих оставшихся пружин. Условие μ = 0 означает, что сила сопротивления R отсутствует.

Решение задачи

ТАРГ 1989. Рисунок 9 (к решению задачи K4 вариант №9)

Груз 1 массой m укреплен на пружинной подвеске в лифте (рис. Д2.0 — Д2.9, табл. Д2). Лифт движется вертикально по закону z = 0,5α1t2 + α2sin(ωt) + α3cos(ωt) (ось z направлена по вертикали вверх; z выражено в метрах, t — в секундах). На груз действует сила сопротивления среды R = μv, где v — скорость груза по отношению к лифту. Найти закон движения груза по отношению к лифту, т. е. х = f(t); начало координат поместить в точке, где находится прикрепленный к грузу конец пружины, когда пружина не деформирована. При этом во избежание ошибок в знаках направить ось х в сторону удлинения пружины, а груз изобразить в положении, при котором х>0, т.е. пружина растянута. При подсчетах можно принять g = 10 м/с2. Массой пружин и соединительной планки 2 пренебречь. В таблице обозначено: c1, с2, c3 — коэффициенты жесткости пружин, λ0 — удлинение пружины с эквивалентной жесткостью в начальный момент времени t = 0, v0 — начальная скорость груза по отношению к лифту (направлена вертикально вверх). Прочерк в столбцах c1, с2, c3 означает, что соответствующая пружина отсутствует и на чертеже изображаться не должна. Если при этом конец одной из оставшихся пружин окажется свободным, его следует прикрепить в соответствующем месте или к грузу или к потолку (полу) лифта; то же следует сделать, если свободными окажутся соединенные планкой 2 концы обеих оставшихся пружин. Условие μ = 0 означает, что сила сопротивления R отсутствует.

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы