О содержании книги вполне можно судить по подробному оглавлению. Вначале автор излагает элементы математической логики, наивной теории множеств вплоть до возникновения парадоксов. Затем выбирается некоторая система аксиом теории множеств (она приводится полностью в добавлении I), лежащая в основе всего дальнейшего изложения. Аксиоматическое изложение обычно перегружается формальными выкладками, затрудняющими чтение. Автор, на мой взгляд, удачно избегает этого, вместе с тем сохраняя достаточную строгость, и всюду заботится о логической обоснованности каждого нового шага, каждого введения нового понятия, стараясь заблаговременно подготовить читателя к этому. Автор также показывает важность полученных результатов, мотивирует необходимость изучения возникающих вопросов и, наконец, не только знакомит читателя с некоторым кругом идей и методов, но и старается развивать у него определенные навыки творческого мышления, навыки в решении задач. Перечисленные методические достоинства наряду с несомненными научными позволяют рекомендовать книгу в качестве учебного пособия для физико-математических школ, для студентов младших курсов педагогических вузов и университетов. Без сомнения, она должна заинтересовать также учителей математики школ и преподавателей математики высших учебных заведений.