Транспортная задача: Постановка

 1. Постановка транспортной задачи.

Среди задач линейного программирования выделяется класс задач, условия постановки которых в определенной степени позволяют упростить процедуру их решения и определить специфические алгоритмы нахождения этих решений. Этот класс задач получил название "Транспортные задачи".

Рассмотрим постановку таких задач.

Пусть имеем m предприятий A1, A2,..., Am, производящих один и тот же продукт в количествах соответственно a1, a2,..., am.

Пусть, далее, имеется n потребителей (складов) B1, B2,..., Bn с потребностями (вместимостями) соответственно b1, b2,..., bn.

Пусть весь произведенный продукт может быть размещен на складах B1, B2,..., Bn при полном их заполнении.

Пусть, наконец, перевозка единицы продукции из пункта Ai в пункт Bj оценивается величиной cij (cij - заданы).

Необходимо определить наилучший план перевозок по стоимости, т.е. такой план, который давал бы минимальную стоимость перевозок всей произведенной продукции на склады.

Строим математическую модель.

Пусть xij - количество продукта, перевозимого из пункта Ai в пункт Bj. Из постановки задачи очевидно, что каждый склад вмещает:

 ОППА ошибка в формуле!

А так как производится столько продукции, сколько ее потребляется (складируется), то:

 ОППА ошибка в формуле!

(продукт с предприятия вывозится полностью).

Далее, очевидным является то, что количество перевозимой с предприятия на склад продукции не может быть отрицательным, т.е.

ОППА ошибка в формуле!

Так как необходимо определить наилучший план перевозок по стоимости, то строим целевую функцию суммарных затрат на перевозки. Она должна быть минимизирована. Такая целевая функция имеет вид:

ОППА ошибка в формуле!

Таким образом, имеем следующую математическую постановку задачи. Найти такие xij, которые доставляют минимум линейной форме L, т.е. и удовлетворяют условиям:

ОППА ошибка в формуле! (1)
ОППА ошибка в формуле! (2)
ОППА ошибка в формуле! (3)

 

Из (1) и (2) следует, что

ОППА ошибка в формуле!

закрытая транспортная задача

Именно в этом соотношении заключается основная специфика выделенного класса задач, так как это соотношение определяет дополнительное условие (как бы скрытое), которое позволяет произвольным образом распорядиться одной из переменных xij, а тем самым упростить решение задачи).

 

 

 




Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы