Для функции A∧B∧C→B∧C≡¬(A∨B∨C):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

(A∨B)∨C:
ABCA∨B(A∨B)∨C
00000
00101
01011
01111
10011
10111
11011
11111

¬((A∨B)∨C):
ABCA∨B(A∨B)∨C¬((A∨B)∨C)
000001
001010
010110
011110
100110
101110
110110
111110

A∧B:
ABA∧B
000
010
100
111

(A∧B)∧C:
ABCA∧B(A∧B)∧C
00000
00100
01000
01100
10000
10100
11010
11111

B∧C:
BCB∧C
000
010
100
111

((A∧B)∧C)→(B∧C):
ABCA∧B(A∧B)∧CB∧C((A∧B)∧C)→(B∧C)
0000001
0010001
0100001
0110011
1000001
1010001
1101001
1111111

(((A∧B)∧C)→(B∧C))≡(¬((A∨B)∨C)):
ABCA∧B(A∧B)∧CB∧C((A∧B)∧C)→(B∧C)A∨B(A∨B)∨C¬((A∨B)∨C)(((A∧B)∧C)→(B∧C))≡(¬((A∨B)∨C))
00000010011
00100010100
01000011100
01100111100
10000011100
10100011100
11010011100
11111111100

Общая таблица истинности:

ABCA∨B(A∨B)∨C¬((A∨B)∨C)A∧B(A∧B)∧CB∧C((A∧B)∧C)→(B∧C)A∧B∧C→B∧C≡¬(A∨B∨C)
00000100011
00101000010
01011000010
01111000110
10011000010
10111000010
11011010010
11111011110

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0010
0100
0110
1000
1010
1100
1110
Fсднф = ¬A∧¬B∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0010
0100
0110
1000
1010
1100
1110
Fскнф = (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B ⊕ C ⊕ A∧B ⊕ A∧C ⊕ B∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы