Для функции C∨¬A∧¬B:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

C∨((¬A)∧(¬B)):
CAB¬A¬B(¬A)∧(¬B)C∨((¬A)∧(¬B))
0001111
0011000
0100100
0110000
1001111
1011001
1100101
1110001

Общая таблица истинности:

CAB¬A¬B(¬A)∧(¬B)C∨¬A∧¬B
0001111
0011000
0100100
0110000
1001111
1011001
1100101
1110001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
CABF
0001
0010
0100
0110
1001
1011
1101
1111
Fсднф = ¬C∧¬A∧¬B ∨ C∧¬A∧¬B ∨ C∧¬A∧B ∨ C∧A∧¬B ∨ C∧A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
CABF
0001
0010
0100
0110
1001
1011
1101
1111
Fскнф = (C∨A∨¬B) ∧ (C∨¬A∨B) ∧ (C∨¬A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
CABFж
0001
0010
0100
0110
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧C ⊕ C010∧A ⊕ C001∧B ⊕ C110∧C∧A ⊕ C101∧C∧B ⊕ C011∧A∧B ⊕ C111∧C∧A∧B

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B ⊕ C∧A ⊕ C∧B ⊕ A∧B ⊕ C∧A∧B
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2020, Список Литературы