Таблица истинности для функции ((X→Y)∧((¬Y→Z)→¬X)):


Промежуточные таблицы истинности:
X→Y:
XYX→Y
001
011
100
111

¬Y:
Y¬Y
01
10

(¬Y)→Z:
YZ¬Y(¬Y)→Z
0010
0111
1001
1101

¬X:
X¬X
01
10

((¬Y)→Z)→(¬X):
YZX¬Y(¬Y)→Z¬X((¬Y)→Z)→(¬X)
0001011
0011001
0101111
0111100
1000111
1010100
1100111
1110100

(X→Y)∧(((¬Y)→Z)→(¬X)):
XYZX→Y¬Y(¬Y)→Z¬X((¬Y)→Z)→(¬X)(X→Y)∧(((¬Y)→Z)→(¬X))
000110111
001111111
010101111
011101111
100010010
101011000
110101000
111101000

Общая таблица истинности:

XYZX→Y¬Y(¬Y)→Z¬X((¬Y)→Z)→(¬X)((X→Y)∧((¬Y→Z)→¬X))
000110111
001111111
010101111
011101111
100010010
101011000
110101000
111101000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1000
1010
1100
1110
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1000
1010
1100
1110
Fскнф = (¬X∨Y∨Z) ∧ (¬X∨Y∨¬Z) ∧ (¬X∨¬Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0011
0101
0111
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы