Для функции (X∨Y)∨(¬X→(¬Y≡Z)):


Промежуточные таблицы истинности:
X∨Y:
XYX∨Y
000
011
101
111

¬Y:
Y¬Y
01
10

(¬Y)≡Z:
YZ¬Y(¬Y)≡Z
0010
0111
1001
1100

¬X:
X¬X
01
10

(¬X)→((¬Y)≡Z):
XYZ¬X¬Y(¬Y)≡Z(¬X)→((¬Y)≡Z)
0001100
0011111
0101011
0111000
1000101
1010111
1100011
1110001

(X∨Y)∨((¬X)→((¬Y)≡Z)):
XYZX∨Y¬X¬Y(¬Y)≡Z(¬X)→((¬Y)≡Z)(X∨Y)∨((¬X)→((¬Y)≡Z))
000011000
001011111
010110111
011110001
100101011
101101111
110100111
111100011

Общая таблица истинности:

XYZX∨Y¬Y(¬Y)≡Z¬X(¬X)→((¬Y)≡Z)(X∨Y)∨(¬X→(¬Y≡Z))
000010100
001011111
010101111
011100101
100110011
101111011
110101011
111100011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0011
0101
0111
1001
1011
1101
1111
Fсднф = ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0011
0101
0111
1001
1011
1101
1111
Fскнф = (X∨Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0011
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ Y ⊕ Z ⊕ X∧Y ⊕ X∧Z ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы