Для функции Z⊕X⊕C⊕V⊕B⊕N:


Промежуточные таблицы истинности:
Z⊕X:
ZXZ⊕X
000
011
101
110

(Z⊕X)⊕C:
ZXCZ⊕X(Z⊕X)⊕C
00000
00101
01011
01110
10011
10110
11000
11101

((Z⊕X)⊕C)⊕V:
ZXCVZ⊕X(Z⊕X)⊕C((Z⊕X)⊕C)⊕V
0000000
0001001
0010011
0011010
0100111
0101110
0110100
0111101
1000111
1001110
1010100
1011101
1100000
1101001
1110011
1111010

(((Z⊕X)⊕C)⊕V)⊕B:
ZXCVBZ⊕X(Z⊕X)⊕C((Z⊕X)⊕C)⊕V(((Z⊕X)⊕C)⊕V)⊕B
000000000
000010001
000100011
000110010
001000111
001010110
001100100
001110101
010001111
010011110
010101100
010111101
011001000
011011001
011101011
011111010
100001111
100011110
100101100
100111101
101001000
101011001
101101011
101111010
110000000
110010001
110100011
110110010
111000111
111010110
111100100
111110101

((((Z⊕X)⊕C)⊕V)⊕B)⊕N:
ZXCVBNZ⊕X(Z⊕X)⊕C((Z⊕X)⊕C)⊕V(((Z⊕X)⊕C)⊕V)⊕B((((Z⊕X)⊕C)⊕V)⊕B)⊕N
00000000000
00000100001
00001000011
00001100010
00010000111
00010100110
00011000100
00011100101
00100001111
00100101110
00101001100
00101101101
00110001000
00110101001
00111001011
00111101010
01000011111
01000111110
01001011100
01001111101
01010011000
01010111001
01011011011
01011111010
01100010000
01100110001
01101010011
01101110010
01110010111
01110110110
01111010100
01111110101
10000011111
10000111110
10001011100
10001111101
10010011000
10010111001
10011011011
10011111010
10100010000
10100110001
10101010011
10101110010
10110010111
10110110110
10111010100
10111110101
11000000000
11000100001
11001000011
11001100010
11010000111
11010100110
11011000100
11011100101
11100001111
11100101110
11101001100
11101101101
11110001000
11110101001
11111001011
11111101010

Общая таблица истинности:

ZXCVBNZ⊕X(Z⊕X)⊕C((Z⊕X)⊕C)⊕V(((Z⊕X)⊕C)⊕V)⊕BZ⊕X⊕C⊕V⊕B⊕N
00000000000
00000100001
00001000011
00001100010
00010000111
00010100110
00011000100
00011100101
00100001111
00100101110
00101001100
00101101101
00110001000
00110101001
00111001011
00111101010
01000011111
01000111110
01001011100
01001111101
01010011000
01010111001
01011011011
01011111010
01100010000
01100110001
01101010011
01101110010
01110010111
01110110110
01111010100
01111110101
10000011111
10000111110
10001011100
10001111101
10010011000
10010111001
10011011011
10011111010
10100010000
10100110001
10101010011
10101110010
10110010111
10110110110
10111010100
10111110101
11000000000
11000100001
11001000011
11001100010
11010000111
11010100110
11011000100
11011100101
11100001111
11100101110
11101001100
11101101101
11110001000
11110101001
11111001011
11111101010

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ZXCVBNF
0000000
0000011
0000101
0000110
0001001
0001010
0001100
0001111
0010001
0010010
0010100
0010111
0011000
0011011
0011101
0011110
0100001
0100010
0100100
0100111
0101000
0101011
0101101
0101110
0110000
0110011
0110101
0110110
0111001
0111010
0111100
0111111
1000001
1000010
1000100
1000111
1001000
1001011
1001101
1001110
1010000
1010011
1010101
1010110
1011001
1011010
1011100
1011111
1100000
1100011
1100101
1100110
1101001
1101010
1101100
1101111
1110001
1110010
1110100
1110111
1111000
1111011
1111101
1111110
Fсднф = ¬Z∧¬X∧¬C∧¬V∧¬B∧N ∨ ¬Z∧¬X∧¬C∧¬V∧B∧¬N ∨ ¬Z∧¬X∧¬C∧V∧¬B∧¬N ∨ ¬Z∧¬X∧¬C∧V∧B∧N ∨ ¬Z∧¬X∧C∧¬V∧¬B∧¬N ∨ ¬Z∧¬X∧C∧¬V∧B∧N ∨ ¬Z∧¬X∧C∧V∧¬B∧N ∨ ¬Z∧¬X∧C∧V∧B∧¬N ∨ ¬Z∧X∧¬C∧¬V∧¬B∧¬N ∨ ¬Z∧X∧¬C∧¬V∧B∧N ∨ ¬Z∧X∧¬C∧V∧¬B∧N ∨ ¬Z∧X∧¬C∧V∧B∧¬N ∨ ¬Z∧X∧C∧¬V∧¬B∧N ∨ ¬Z∧X∧C∧¬V∧B∧¬N ∨ ¬Z∧X∧C∧V∧¬B∧¬N ∨ ¬Z∧X∧C∧V∧B∧N ∨ Z∧¬X∧¬C∧¬V∧¬B∧¬N ∨ Z∧¬X∧¬C∧¬V∧B∧N ∨ Z∧¬X∧¬C∧V∧¬B∧N ∨ Z∧¬X∧¬C∧V∧B∧¬N ∨ Z∧¬X∧C∧¬V∧¬B∧N ∨ Z∧¬X∧C∧¬V∧B∧¬N ∨ Z∧¬X∧C∧V∧¬B∧¬N ∨ Z∧¬X∧C∧V∧B∧N ∨ Z∧X∧¬C∧¬V∧¬B∧N ∨ Z∧X∧¬C∧¬V∧B∧¬N ∨ Z∧X∧¬C∧V∧¬B∧¬N ∨ Z∧X∧¬C∧V∧B∧N ∨ Z∧X∧C∧¬V∧¬B∧¬N ∨ Z∧X∧C∧¬V∧B∧N ∨ Z∧X∧C∧V∧¬B∧N ∨ Z∧X∧C∧V∧B∧¬N
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ZXCVBNF
0000000
0000011
0000101
0000110
0001001
0001010
0001100
0001111
0010001
0010010
0010100
0010111
0011000
0011011
0011101
0011110
0100001
0100010
0100100
0100111
0101000
0101011
0101101
0101110
0110000
0110011
0110101
0110110
0111001
0111010
0111100
0111111
1000001
1000010
1000100
1000111
1001000
1001011
1001101
1001110
1010000
1010011
1010101
1010110
1011001
1011010
1011100
1011111
1100000
1100011
1100101
1100110
1101001
1101010
1101100
1101111
1110001
1110010
1110100
1110111
1111000
1111011
1111101
1111110
Fскнф = (Z∨X∨C∨V∨B∨N) ∧ (Z∨X∨C∨V∨¬B∨¬N) ∧ (Z∨X∨C∨¬V∨B∨¬N) ∧ (Z∨X∨C∨¬V∨¬B∨N) ∧ (Z∨X∨¬C∨V∨B∨¬N) ∧ (Z∨X∨¬C∨V∨¬B∨N) ∧ (Z∨X∨¬C∨¬V∨B∨N) ∧ (Z∨X∨¬C∨¬V∨¬B∨¬N) ∧ (Z∨¬X∨C∨V∨B∨¬N) ∧ (Z∨¬X∨C∨V∨¬B∨N) ∧ (Z∨¬X∨C∨¬V∨B∨N) ∧ (Z∨¬X∨C∨¬V∨¬B∨¬N) ∧ (Z∨¬X∨¬C∨V∨B∨N) ∧ (Z∨¬X∨¬C∨V∨¬B∨¬N) ∧ (Z∨¬X∨¬C∨¬V∨B∨¬N) ∧ (Z∨¬X∨¬C∨¬V∨¬B∨N) ∧ (¬Z∨X∨C∨V∨B∨¬N) ∧ (¬Z∨X∨C∨V∨¬B∨N) ∧ (¬Z∨X∨C∨¬V∨B∨N) ∧ (¬Z∨X∨C∨¬V∨¬B∨¬N) ∧ (¬Z∨X∨¬C∨V∨B∨N) ∧ (¬Z∨X∨¬C∨V∨¬B∨¬N) ∧ (¬Z∨X∨¬C∨¬V∨B∨¬N) ∧ (¬Z∨X∨¬C∨¬V∨¬B∨N) ∧ (¬Z∨¬X∨C∨V∨B∨N) ∧ (¬Z∨¬X∨C∨V∨¬B∨¬N) ∧ (¬Z∨¬X∨C∨¬V∨B∨¬N) ∧ (¬Z∨¬X∨C∨¬V∨¬B∨N) ∧ (¬Z∨¬X∨¬C∨V∨B∨¬N) ∧ (¬Z∨¬X∨¬C∨V∨¬B∨N) ∧ (¬Z∨¬X∨¬C∨¬V∨B∨N) ∧ (¬Z∨¬X∨¬C∨¬V∨¬B∨¬N)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ZXCVBNFж
0000000
0000011
0000101
0000110
0001001
0001010
0001100
0001111
0010001
0010010
0010100
0010111
0011000
0011011
0011101
0011110
0100001
0100010
0100100
0100111
0101000
0101011
0101101
0101110
0110000
0110011
0110101
0110110
0111001
0111010
0111100
0111111
1000001
1000010
1000100
1000111
1001000
1001011
1001101
1001110
1010000
1010011
1010101
1010110
1011001
1011010
1011100
1011111
1100000
1100011
1100101
1100110
1101001
1101010
1101100
1101111
1110001
1110010
1110100
1110111
1111000
1111011
1111101
1111110

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧Z ⊕ C010000∧X ⊕ C001000∧C ⊕ C000100∧V ⊕ C000010∧B ⊕ C000001∧N ⊕ C110000∧Z∧X ⊕ C101000∧Z∧C ⊕ C100100∧Z∧V ⊕ C100010∧Z∧B ⊕ C100001∧Z∧N ⊕ C011000∧X∧C ⊕ C010100∧X∧V ⊕ C010010∧X∧B ⊕ C010001∧X∧N ⊕ C001100∧C∧V ⊕ C001010∧C∧B ⊕ C001001∧C∧N ⊕ C000110∧V∧B ⊕ C000101∧V∧N ⊕ C000011∧B∧N ⊕ C111000∧Z∧X∧C ⊕ C110100∧Z∧X∧V ⊕ C110010∧Z∧X∧B ⊕ C110001∧Z∧X∧N ⊕ C101100∧Z∧C∧V ⊕ C101010∧Z∧C∧B ⊕ C101001∧Z∧C∧N ⊕ C100110∧Z∧V∧B ⊕ C100101∧Z∧V∧N ⊕ C100011∧Z∧B∧N ⊕ C011100∧X∧C∧V ⊕ C011010∧X∧C∧B ⊕ C011001∧X∧C∧N ⊕ C010110∧X∧V∧B ⊕ C010101∧X∧V∧N ⊕ C010011∧X∧B∧N ⊕ C001110∧C∧V∧B ⊕ C001101∧C∧V∧N ⊕ C001011∧C∧B∧N ⊕ C000111∧V∧B∧N ⊕ C111100∧Z∧X∧C∧V ⊕ C111010∧Z∧X∧C∧B ⊕ C111001∧Z∧X∧C∧N ⊕ C110110∧Z∧X∧V∧B ⊕ C110101∧Z∧X∧V∧N ⊕ C110011∧Z∧X∧B∧N ⊕ C101110∧Z∧C∧V∧B ⊕ C101101∧Z∧C∧V∧N ⊕ C101011∧Z∧C∧B∧N ⊕ C100111∧Z∧V∧B∧N ⊕ C011110∧X∧C∧V∧B ⊕ C011101∧X∧C∧V∧N ⊕ C011011∧X∧C∧B∧N ⊕ C010111∧X∧V∧B∧N ⊕ C001111∧C∧V∧B∧N ⊕ C111110∧Z∧X∧C∧V∧B ⊕ C111101∧Z∧X∧C∧V∧N ⊕ C111011∧Z∧X∧C∧B∧N ⊕ C110111∧Z∧X∧V∧B∧N ⊕ C101111∧Z∧C∧V∧B∧N ⊕ C011111∧X∧C∧V∧B∧N ⊕ C111111∧Z∧X∧C∧V∧B∧N

Так как Fж(000000) = 0, то С000000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 1 => С100000 = 0 ⊕ 1 = 1
Fж(010000) = С000000 ⊕ С010000 = 1 => С010000 = 0 ⊕ 1 = 1
Fж(001000) = С000000 ⊕ С001000 = 1 => С001000 = 0 ⊕ 1 = 1
Fж(000100) = С000000 ⊕ С000100 = 1 => С000100 = 0 ⊕ 1 = 1
Fж(000010) = С000000 ⊕ С000010 = 1 => С000010 = 0 ⊕ 1 = 1
Fж(000001) = С000000 ⊕ С000001 = 1 => С000001 = 0 ⊕ 1 = 1
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 0 => С110000 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 0 => С101000 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 0 => С100100 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 0 => С100010 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 0 => С100001 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 0 => С011000 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 0 => С010100 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 0 => С010010 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 0 => С010001 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 0 => С001100 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 0 => С001010 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 0 => С001001 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 0 => С000110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 0 => С000101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 0 => С000011 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 1 => С111000 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 1 => С110100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 1 => С110010 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 1 => С110001 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 1 => С101100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 1 => С101010 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 1 => С101001 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 1 => С100110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 1 => С100101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 1 => С100011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 1 => С011100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 1 => С010110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 1 => С010101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 1 => С010011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 1 => С001110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 1 => С001101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 1 => С001011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 1 => С000111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 0 => С111100 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 0 => С111010 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 0 => С111001 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 0 => С110110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 0 => С110101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 0 => С110011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 0 => С101110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 0 => С101101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 0 => С101011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 0 => С100111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 0 => С011110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 0 => С011101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 0 => С011011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 0 => С010111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 0 => С001111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 1 => С111110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 1 => С111101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 1 => С111011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 1 => С110111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 1 => С101111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 1 => С011111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 0 => С111111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = Z ⊕ X ⊕ C ⊕ V ⊕ B ⊕ N
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы