Для функции ¬(X∨Y)∨X:


Промежуточные таблицы истинности:
X∨Y:
XYX∨Y
000
011
101
111

¬(X∨Y):
XYX∨Y¬(X∨Y)
0001
0110
1010
1110

(¬(X∨Y))∨X:
XYX∨Y¬(X∨Y)(¬(X∨Y))∨X
00011
01100
10101
11101

Общая таблица истинности:

XYX∨Y¬(X∨Y)¬(X∨Y)∨X
00011
01100
10101
11101


Построение полинома Жегалкина:

По таблице истинности функции
XYFж
001
010
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧X ⊕ C01∧Y ⊕ C11∧X∧Y

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 1 ⊕ 1 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 1 ⊕ 0 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ Y ⊕ X∧Y

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы