Для функции A∧(B∧(C∨D∨E)∨C∧(D∨E))∨¬D∧¬E∧(¬A∨¬B∨¬C)∨¬B∧¬C∧(D∨E):


Промежуточные таблицы истинности:
C∨D:
CDC∨D
000
011
101
111

(C∨D)∨E:
CDEC∨D(C∨D)∨E
00000
00101
01011
01111
10011
10111
11011
11111

D∨E:
DED∨E
000
011
101
111

B∧((C∨D)∨E):
BCDEC∨D(C∨D)∨EB∧((C∨D)∨E)
0000000
0001010
0010110
0011110
0100110
0101110
0110110
0111110
1000000
1001011
1010111
1011111
1100111
1101111
1110111
1111111

C∧(D∨E):
CDED∨EC∧(D∨E)
00000
00110
01010
01110
10000
10111
11011
11111

(B∧((C∨D)∨E))∨(C∧(D∨E)):
BCDEC∨D(C∨D)∨EB∧((C∨D)∨E)D∨EC∧(D∨E)(B∧((C∨D)∨E))∨(C∧(D∨E))
0000000000
0001010100
0010110100
0011110100
0100110000
0101110111
0110110111
0111110111
1000000000
1001011101
1010111101
1011111101
1100111001
1101111111
1110111111
1111111111

¬A:
A¬A
01
10

¬B:
B¬B
01
10

¬C:
C¬C
01
10

(¬A)∨(¬B):
AB¬A¬B(¬A)∨(¬B)
00111
01101
10011
11000

((¬A)∨(¬B))∨(¬C):
ABC¬A¬B(¬A)∨(¬B)¬C((¬A)∨(¬B))∨(¬C)
00011111
00111101
01010111
01110101
10001111
10101101
11000011
11100000

¬D:
D¬D
01
10

¬E:
E¬E
01
10

A∧((B∧((C∨D)∨E))∨(C∧(D∨E))):
ABCDEC∨D(C∨D)∨EB∧((C∨D)∨E)D∨EC∧(D∨E)(B∧((C∨D)∨E))∨(C∧(D∨E))A∧((B∧((C∨D)∨E))∨(C∧(D∨E)))
000000000000
000010101000
000101101000
000111101000
001001100000
001011101110
001101101110
001111101110
010000000000
010010111010
010101111010
010111111010
011001110010
011011111110
011101111110
011111111110
100000000000
100010101000
100101101000
100111101000
101001100000
101011101111
101101101111
101111101111
110000000000
110010111011
110101111011
110111111011
111001110011
111011111111
111101111111
111111111111

(¬D)∧(¬E):
DE¬D¬E(¬D)∧(¬E)
00111
01100
10010
11000

((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C)):
DEABC¬D¬E(¬D)∧(¬E)¬A¬B(¬A)∨(¬B)¬C((¬A)∨(¬B))∨(¬C)((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))
00000111111111
00001111111011
00010111101111
00011111101011
00100111011111
00101111011011
00110111000111
00111111000000
01000100111110
01001100111010
01010100101110
01011100101010
01100100011110
01101100011010
01110100000110
01111100000000
10000010111110
10001010111010
10010010101110
10011010101010
10100010011110
10101010011010
10110010000110
10111010000000
11000000111110
11001000111010
11010000101110
11011000101010
11100000011110
11101000011010
11110000000110
11111000000000

(¬B)∧(¬C):
BC¬B¬C(¬B)∧(¬C)
00111
01100
10010
11000

((¬B)∧(¬C))∧(D∨E):
BCDE¬B¬C(¬B)∧(¬C)D∨E((¬B)∧(¬C))∧(D∨E)
000011100
000111111
001011111
001111111
010010000
010110010
011010010
011110010
100001000
100101010
101001010
101101010
110000000
110100010
111000010
111100010

(A∧((B∧((C∨D)∨E))∨(C∧(D∨E))))∨(((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))):
ABCDEC∨D(C∨D)∨EB∧((C∨D)∨E)D∨EC∧(D∨E)(B∧((C∨D)∨E))∨(C∧(D∨E))A∧((B∧((C∨D)∨E))∨(C∧(D∨E)))¬D¬E(¬D)∧(¬E)¬A¬B(¬A)∨(¬B)¬C((¬A)∨(¬B))∨(¬C)((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))(A∧((B∧((C∨D)∨E))∨(C∧(D∨E))))∨(((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C)))
0000000000001111111111
0000101010001001111100
0001011010000101111100
0001111010000001111100
0010011000001111110111
0010111011101001110100
0011011011100101110100
0011111011100001110100
0100000000001111011111
0100101110101001011100
0101011110100101011100
0101111110100001011100
0110011100101111010111
0110111111101001010100
0111011111100101010100
0111111111100001010100
1000000000001110111111
1000101010001000111100
1001011010000100111100
1001111010000000111100
1010011000001110110111
1010111011111000110101
1011011011110100110101
1011111011110000110101
1100000000001110001111
1100101110111000001101
1101011110110100001101
1101111110110000001101
1110011100111110000001
1110111111111000000001
1111011111110100000001
1111111111110000000001

((A∧((B∧((C∨D)∨E))∨(C∧(D∨E))))∨(((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))))∨(((¬B)∧(¬C))∧(D∨E)):
ABCDEC∨D(C∨D)∨EB∧((C∨D)∨E)D∨EC∧(D∨E)(B∧((C∨D)∨E))∨(C∧(D∨E))A∧((B∧((C∨D)∨E))∨(C∧(D∨E)))¬D¬E(¬D)∧(¬E)¬A¬B(¬A)∨(¬B)¬C((¬A)∨(¬B))∨(¬C)((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))(A∧((B∧((C∨D)∨E))∨(C∧(D∨E))))∨(((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C)))¬B¬C(¬B)∧(¬C)D∨E((¬B)∧(¬C))∧(D∨E)((A∧((B∧((C∨D)∨E))∨(C∧(D∨E))))∨(((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))))∨(((¬B)∧(¬C))∧(D∨E))
0000000000001111111111111001
0000101010001001111100111111
0001011010000101111100111111
0001111010000001111100111111
0010011000001111110111100001
0010111011101001110100100100
0011011011100101110100100100
0011111011100001110100100100
0100000000001111011111010001
0100101110101001011100010100
0101011110100101011100010100
0101111110100001011100010100
0110011100101111010111000001
0110111111101001010100000100
0111011111100101010100000100
0111111111100001010100000100
1000000000001110111111111001
1000101010001000111100111111
1001011010000100111100111111
1001111010000000111100111111
1010011000001110110111100001
1010111011111000110101100101
1011011011110100110101100101
1011111011110000110101100101
1100000000001110001111010001
1100101110111000001101010101
1101011110110100001101010101
1101111110110000001101010101
1110011100111110000001000001
1110111111111000000001000101
1111011111110100000001000101
1111111111110000000001000101

Общая таблица истинности:

ABCDEC∨D(C∨D)∨ED∨EB∧((C∨D)∨E)C∧(D∨E)(B∧((C∨D)∨E))∨(C∧(D∨E))¬A¬B¬C(¬A)∨(¬B)((¬A)∨(¬B))∨(¬C)¬D¬EA∧((B∧((C∨D)∨E))∨(C∧(D∨E)))(¬D)∧(¬E)((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C))(¬B)∧(¬C)((¬B)∧(¬C))∧(D∨E)(A∧((B∧((C∨D)∨E))∨(C∧(D∨E))))∨(((¬D)∧(¬E))∧(((¬A)∨(¬B))∨(¬C)))A∧(B∧(C∨D∨E)∨C∧(D∨E))∨¬D∧¬E∧(¬A∨¬B∨¬C)∨¬B∧¬C∧(D∨E)
0000000000011111110111011
0000101100011111100001101
0001011100011111010001101
0001111100011111000001101
0010011000011011110110011
0010111101111011100000000
0011011101111011010000000
0011111101111011000000000
0100000000010111110110011
0100101110110111100000000
0101011110110111010000000
0101111110110111000000000
0110011010110011110110011
0110111111110011100000000
0111011111110011010000000
0111111111110011000000000
1000000000001111110111011
1000101100001111100001101
1001011100001111010001101
1001111100001111000001101
1010011000001011110110011
1010111101101011101000011
1011011101101011011000011
1011111101101011001000011
1100000000000101110110011
1100101110100101101000011
1101011110100101011000011
1101111110100101001000011
1110011010100000111100011
1110111111100000101000011
1111011111100000011000011
1111111111100000001000011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDEF
000001
000011
000101
000111
001001
001010
001100
001110
010001
010010
010100
010110
011001
011010
011100
011110
100001
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111
Fсднф = ¬A∧¬B∧¬C∧¬D∧¬E ∨ ¬A∧¬B∧¬C∧¬D∧E ∨ ¬A∧¬B∧¬C∧D∧¬E ∨ ¬A∧¬B∧¬C∧D∧E ∨ ¬A∧¬B∧C∧¬D∧¬E ∨ ¬A∧B∧¬C∧¬D∧¬E ∨ ¬A∧B∧C∧¬D∧¬E ∨ A∧¬B∧¬C∧¬D∧¬E ∨ A∧¬B∧¬C∧¬D∧E ∨ A∧¬B∧¬C∧D∧¬E ∨ A∧¬B∧¬C∧D∧E ∨ A∧¬B∧C∧¬D∧¬E ∨ A∧¬B∧C∧¬D∧E ∨ A∧¬B∧C∧D∧¬E ∨ A∧¬B∧C∧D∧E ∨ A∧B∧¬C∧¬D∧¬E ∨ A∧B∧¬C∧¬D∧E ∨ A∧B∧¬C∧D∧¬E ∨ A∧B∧¬C∧D∧E ∨ A∧B∧C∧¬D∧¬E ∨ A∧B∧C∧¬D∧E ∨ A∧B∧C∧D∧¬E ∨ A∧B∧C∧D∧E
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDEF
000001
000011
000101
000111
001001
001010
001100
001110
010001
010010
010100
010110
011001
011010
011100
011110
100001
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111
Fскнф = (A∨B∨¬C∨D∨¬E) ∧ (A∨B∨¬C∨¬D∨E) ∧ (A∨B∨¬C∨¬D∨¬E) ∧ (A∨¬B∨C∨D∨¬E) ∧ (A∨¬B∨C∨¬D∨E) ∧ (A∨¬B∨C∨¬D∨¬E) ∧ (A∨¬B∨¬C∨D∨¬E) ∧ (A∨¬B∨¬C∨¬D∨E) ∧ (A∨¬B∨¬C∨¬D∨¬E)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDEFж
000001
000011
000101
000111
001001
001010
001100
001110
010001
010010
010100
010110
011001
011010
011100
011110
100001
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧A ⊕ C01000∧B ⊕ C00100∧C ⊕ C00010∧D ⊕ C00001∧E ⊕ C11000∧A∧B ⊕ C10100∧A∧C ⊕ C10010∧A∧D ⊕ C10001∧A∧E ⊕ C01100∧B∧C ⊕ C01010∧B∧D ⊕ C01001∧B∧E ⊕ C00110∧C∧D ⊕ C00101∧C∧E ⊕ C00011∧D∧E ⊕ C11100∧A∧B∧C ⊕ C11010∧A∧B∧D ⊕ C11001∧A∧B∧E ⊕ C10110∧A∧C∧D ⊕ C10101∧A∧C∧E ⊕ C10011∧A∧D∧E ⊕ C01110∧B∧C∧D ⊕ C01101∧B∧C∧E ⊕ C01011∧B∧D∧E ⊕ C00111∧C∧D∧E ⊕ C11110∧A∧B∧C∧D ⊕ C11101∧A∧B∧C∧E ⊕ C11011∧A∧B∧D∧E ⊕ C10111∧A∧C∧D∧E ⊕ C01111∧B∧C∧D∧E ⊕ C11111∧A∧B∧C∧D∧E

Так как Fж(00000) = 1, то С00000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 1 => С10000 = 1 ⊕ 1 = 0
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 1 ⊕ 1 = 0
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 1 ⊕ 1 = 0
Fж(00010) = С00000 ⊕ С00010 = 1 => С00010 = 1 ⊕ 1 = 0
Fж(00001) = С00000 ⊕ С00001 = 1 => С00001 = 1 ⊕ 1 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 1 => С11000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 1 => С10100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 1 => С01100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 0 => С01010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 0 => С00101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 1 => С00011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 1 => С11100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 1 => С11010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 1 => С11001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 1 => С10101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 1 => С10011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 0 => С01110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 1 => С11110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 1 => С11101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 1 => С11011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 1 => С10111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B∧D ⊕ B∧E ⊕ C∧D ⊕ C∧E ⊕ A∧B∧D ⊕ A∧B∧E ⊕ A∧C∧D ⊕ A∧C∧E ⊕ B∧C∧D ⊕ B∧C∧E ⊕ B∧D∧E ⊕ C∧D∧E ⊕ A∧B∧C∧D ⊕ A∧B∧C∧E ⊕ A∧B∧D∧E ⊕ A∧C∧D∧E ⊕ B∧C∧D∧E ⊕ A∧B∧C∧D∧E
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2017, Список Литературы