Для функции ¬(A∧C)→¬(B∧C):


Промежуточные таблицы истинности:
A∧C:
ACA∧C
000
010
100
111

B∧C:
BCB∧C
000
010
100
111

¬(A∧C):
ACA∧C¬(A∧C)
0001
0101
1001
1110

¬(B∧C):
BCB∧C¬(B∧C)
0001
0101
1001
1110

(¬(A∧C))→(¬(B∧C)):
ACBA∧C¬(A∧C)B∧C¬(B∧C)(¬(A∧C))→(¬(B∧C))
00001011
00101011
01001011
01101100
10001011
10101011
11010011
11110101

Общая таблица истинности:

ACBA∧CB∧C¬(A∧C)¬(B∧C)¬(A∧C)→¬(B∧C)
00000111
00100111
01000111
01101100
10000111
10100111
11010011
11111001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ACBF
0001
0011
0101
0110
1001
1011
1101
1111
Fсднф = ¬A∧¬C∧¬B ∨ ¬A∧¬C∧B ∨ ¬A∧C∧¬B ∨ A∧¬C∧¬B ∨ A∧¬C∧B ∨ A∧C∧¬B ∨ A∧C∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ACBF
0001
0011
0101
0110
1001
1011
1101
1111
Fскнф = (A∨¬C∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ACBFж
0001
0011
0101
0110
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧C ⊕ C001∧B ⊕ C110∧A∧C ⊕ C101∧A∧B ⊕ C011∧C∧B ⊕ C111∧A∧C∧B

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ C∧B ⊕ A∧C∧B
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы