Для функции (A→B)∧¬(B≡C)∧(D→A):


Промежуточные таблицы истинности:
A→B:
ABA→B
001
011
100
111

B≡C:
BCB≡C
001
010
100
111

D→A:
DAD→A
001
011
100
111

¬(B≡C):
BCB≡C¬(B≡C)
0010
0101
1001
1110

(A→B)∧(¬(B≡C)):
ABCA→BB≡C¬(B≡C)(A→B)∧(¬(B≡C))
0001100
0011011
0101011
0111100
1000100
1010010
1101011
1111100

((A→B)∧(¬(B≡C)))∧(D→A):
ABCDA→BB≡C¬(B≡C)(A→B)∧(¬(B≡C))D→A((A→B)∧(¬(B≡C)))∧(D→A)
0000110010
0001110000
0010101111
0011101100
0100101111
0101101100
0110110010
0111110000
1000010010
1001010010
1010001010
1011001010
1100101111
1101101111
1110110010
1111110010

Общая таблица истинности:

ABCDA→BB≡CD→A¬(B≡C)(A→B)∧(¬(B≡C))(A→B)∧¬(B≡C)∧(D→A)
0000111000
0001110000
0010101111
0011100110
0100101111
0101100110
0110111000
0111110000
1000011000
1001011000
1010001100
1011001100
1100101111
1101101111
1110111000
1111111000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDF
00000
00010
00101
00110
01001
01010
01100
01110
10000
10010
10100
10110
11001
11011
11100
11110
Fсднф = ¬A∧¬B∧C∧¬D ∨ ¬A∧B∧¬C∧¬D ∨ A∧B∧¬C∧¬D ∨ A∧B∧¬C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDF
00000
00010
00101
00110
01001
01010
01100
01110
10000
10010
10100
10110
11001
11011
11100
11110
Fскнф = (A∨B∨C∨D) ∧ (A∨B∨C∨¬D) ∧ (A∨B∨¬C∨¬D) ∧ (A∨¬B∨C∨¬D) ∧ (A∨¬B∨¬C∨D) ∧ (A∨¬B∨¬C∨¬D) ∧ (¬A∨B∨C∨D) ∧ (¬A∨B∨C∨¬D) ∧ (¬A∨B∨¬C∨D) ∧ (¬A∨B∨¬C∨¬D) ∧ (¬A∨¬B∨¬C∨D) ∧ (¬A∨¬B∨¬C∨¬D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDFж
00000
00010
00101
00110
01001
01010
01100
01110
10000
10010
10100
10110
11001
11011
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧D

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 0 ⊕ 0 = 0
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 0 ⊕ 1 = 1
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 0 ⊕ 1 = 1
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = B ⊕ C ⊕ A∧C ⊕ B∧D ⊕ C∧D ⊕ A∧B∧C ⊕ A∧B∧D ⊕ A∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2020, Список Литературы