Для функции ((X∧Y)⊕X)⊕Y:


Промежуточные таблицы истинности:
X∧Y:
XYX∧Y
000
010
100
111

(X∧Y)⊕X:
XYX∧Y(X∧Y)⊕X
0000
0100
1001
1110

((X∧Y)⊕X)⊕Y:
XYX∧Y(X∧Y)⊕X((X∧Y)⊕X)⊕Y
00000
01001
10011
11101

Общая таблица истинности:

XYX∧Y(X∧Y)⊕X((X∧Y)⊕X)⊕Y
00000
01001
10011
11101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYF
000
011
101
111
Fсднф = ¬X∧Y ∨ X∧¬Y ∨ X∧Y
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYF
000
011
101
111
Fскнф = (X∨Y)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYFж
000
011
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧X ⊕ C01∧Y ⊕ C11∧X∧Y

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 0 ⊕ 1 = 1
Fж(01) = С00 ⊕ С01 = 1 => С01 = 0 ⊕ 1 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ Y ⊕ X∧Y
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы