Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Для функции Z|Y←P≡X∧Y∨Z∧X⊕P↓Y:
Промежуточные таблицы истинности:Z|Y: P↓Y: X∧Y: Z∧X: (X∧Y)∨(Z∧X): X | Y | Z | X∧Y | Z∧X | (X∧Y)∨(Z∧X) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
((X∧Y)∨(Z∧X))⊕(P↓Y): X | Y | Z | P | X∧Y | Z∧X | (X∧Y)∨(Z∧X) | P↓Y | ((X∧Y)∨(Z∧X))⊕(P↓Y) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
(Z|Y)←P: Z | Y | P | Z|Y | (Z|Y)←P | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
((Z|Y)←P)≡(((X∧Y)∨(Z∧X))⊕(P↓Y)): Z | Y | P | X | Z|Y | (Z|Y)←P | X∧Y | Z∧X | (X∧Y)∨(Z∧X) | P↓Y | ((X∧Y)∨(Z∧X))⊕(P↓Y) | ((Z|Y)←P)≡(((X∧Y)∨(Z∧X))⊕(P↓Y)) | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
Общая таблица истинности:Z | Y | P | X | Z|Y | P↓Y | X∧Y | Z∧X | (X∧Y)∨(Z∧X) | ((X∧Y)∨(Z∧X))⊕(P↓Y) | (Z|Y)←P | Z|Y←P≡X∧Y∨Z∧X⊕P↓Y | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: Z | Y | P | X | F | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬Z∧¬Y∧¬P∧¬X ∨ ¬Z∧¬Y∧¬P∧X ∨ ¬Z∧Y∧¬P∧X ∨ ¬Z∧Y∧P∧X ∨ Z∧¬Y∧¬P∧¬X ∨ Z∧¬Y∧P∧X ∨ Z∧Y∧¬P∧X ∨ Z∧Y∧P∧¬X Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: Z | Y | P | X | F | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
F скнф = (Z∨Y∨¬P∨X) ∧ (Z∨Y∨¬P∨¬X) ∧ (Z∨¬Y∨P∨X) ∧ (Z∨¬Y∨¬P∨X) ∧ (¬Z∨Y∨P∨¬X) ∧ (¬Z∨Y∨¬P∨X) ∧ (¬Z∨¬Y∨P∨X) ∧ (¬Z∨¬Y∨¬P∨¬X) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции Z | Y | P | X | Fж | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 0000 ⊕ C 1000∧Z ⊕ C 0100∧Y ⊕ C 0010∧P ⊕ C 0001∧X ⊕ C 1100∧Z∧Y ⊕ C 1010∧Z∧P ⊕ C 1001∧Z∧X ⊕ C 0110∧Y∧P ⊕ C 0101∧Y∧X ⊕ C 0011∧P∧X ⊕ C 1110∧Z∧Y∧P ⊕ C 1101∧Z∧Y∧X ⊕ C 1011∧Z∧P∧X ⊕ C 0111∧Y∧P∧X ⊕ C 1111∧Z∧Y∧P∧X Так как F ж(0000) = 1, то С 0000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(1000) = С 0000 ⊕ С 1000 = 1 => С 1000 = 1 ⊕ 1 = 0 F ж(0100) = С 0000 ⊕ С 0100 = 0 => С 0100 = 1 ⊕ 0 = 1 F ж(0010) = С 0000 ⊕ С 0010 = 0 => С 0010 = 1 ⊕ 0 = 1 F ж(0001) = С 0000 ⊕ С 0001 = 1 => С 0001 = 1 ⊕ 1 = 0 F ж(1100) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 1100 = 0 => С 1100 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0 F ж(1010) = С 0000 ⊕ С 1000 ⊕ С 0010 ⊕ С 1010 = 0 => С 1010 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0 F ж(1001) = С 0000 ⊕ С 1000 ⊕ С 0001 ⊕ С 1001 = 0 => С 1001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1 F ж(0110) = С 0000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0110 = 0 => С 0110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1 F ж(0101) = С 0000 ⊕ С 0100 ⊕ С 0001 ⊕ С 0101 = 1 => С 0101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 F ж(0011) = С 0000 ⊕ С 0010 ⊕ С 0001 ⊕ С 0011 = 0 => С 0011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 F ж(1110) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0010 ⊕ С 1100 ⊕ С 1010 ⊕ С 0110 ⊕ С 1110 = 1 => С 1110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1 F ж(1101) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0001 ⊕ С 1100 ⊕ С 1001 ⊕ С 0101 ⊕ С 1101 = 1 => С 1101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 F ж(1011) = С 0000 ⊕ С 1000 ⊕ С 0010 ⊕ С 0001 ⊕ С 1010 ⊕ С 1001 ⊕ С 0011 ⊕ С 1011 = 1 => С 1011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 F ж(0111) = С 0000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0001 ⊕ С 0110 ⊕ С 0101 ⊕ С 0011 ⊕ С 0111 = 1 => С 0111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0 F ж(1111) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0001 ⊕ С 1100 ⊕ С 1010 ⊕ С 1001 ⊕ С 0110 ⊕ С 0101 ⊕ С 0011 ⊕ С 1110 ⊕ С 1101 ⊕ С 1011 ⊕ С 0111 ⊕ С 1111 = 0 => С 1111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ Y ⊕ P ⊕ Z∧X ⊕ Y∧P ⊕ Y∧X ⊕ Z∧Y∧P ⊕ Z∧Y∧X Логическая схема, соответствующая полиному Жегалкина:
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Наши друзья
Качественное решение задач курсовых работ, РГЗ по техническим предметам. 
Околостуденческое
Это интересно...
Наши контакты
|