Для функции A⊕(B∧¬A∨B∧¬C):


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬C:
C¬C
01
10

B∧(¬A):
BA¬AB∧(¬A)
0010
0100
1011
1100

B∧(¬C):
BC¬CB∧(¬C)
0010
0100
1011
1100

(B∧(¬A))∨(B∧(¬C)):
BAC¬AB∧(¬A)¬CB∧(¬C)(B∧(¬A))∨(B∧(¬C))
00010100
00110000
01000100
01100000
10011111
10111001
11000111
11100000

A⊕((B∧(¬A))∨(B∧(¬C))):
ABC¬AB∧(¬A)¬CB∧(¬C)(B∧(¬A))∨(B∧(¬C))A⊕((B∧(¬A))∨(B∧(¬C)))
000101000
001100000
010111111
011110011
100001001
101000001
110001110
111000001

Общая таблица истинности:

ABC¬A¬CB∧(¬A)B∧(¬C)(B∧(¬A))∨(B∧(¬C))A⊕(B∧¬A∨B∧¬C)
000110000
001100000
010111111
011101011
100010001
101000001
110010110
111000001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0101
0111
1001
1011
1100
1111
Fсднф = ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0101
0111
1001
1011
1100
1111
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (¬A∨¬B∨C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0101
0111
1001
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ B ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2020, Список Литературы