Для функции ((X∨Y)→Y)∧(Z∧Y)→Y:


Промежуточные таблицы истинности:
X∨Y:
XYX∨Y
000
011
101
111

(X∨Y)→Y:
XYX∨Y(X∨Y)→Y
0001
0111
1010
1111

Z∧Y:
ZYZ∧Y
000
010
100
111

((X∨Y)→Y)∧(Z∧Y):
XYZX∨Y(X∨Y)→YZ∧Y((X∨Y)→Y)∧(Z∧Y)
0000100
0010100
0101100
0111111
1001000
1011000
1101100
1111111

(((X∨Y)→Y)∧(Z∧Y))→Y:
XYZX∨Y(X∨Y)→YZ∧Y((X∨Y)→Y)∧(Z∧Y)(((X∨Y)→Y)∧(Z∧Y))→Y
00001001
00101001
01011001
01111111
10010001
10110001
11011001
11111111

Общая таблица истинности:

XYZX∨Y(X∨Y)→YZ∧Y((X∨Y)→Y)∧(Z∧Y)((X∨Y)→Y)∧(Z∧Y)→Y
00001001
00101001
01011001
01111111
10010001
10110001
11011001
11111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1001
1011
1101
1111
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧¬Y∧Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧¬Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0011
0101
0111
1001
1011
1101
1111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0011
0101
0111
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2020, Список Литературы