Для функции ¬A∧C∨B∧(A∨C):


Промежуточные таблицы истинности:
A∨C:
ACA∨C
000
011
101
111

¬A:
A¬A
01
10

(¬A)∧C:
AC¬A(¬A)∧C
0010
0111
1000
1100

B∧(A∨C):
BACA∨CB∧(A∨C)
00000
00110
01010
01110
10000
10111
11011
11111

((¬A)∧C)∨(B∧(A∨C)):
ACB¬A(¬A)∧CA∨CB∧(A∨C)((¬A)∧C)∨(B∧(A∨C))
00010000
00110000
01011101
01111111
10000100
10100111
11000100
11100111

Общая таблица истинности:

ACBA∨C¬A(¬A)∧CB∧(A∨C)¬A∧C∨B∧(A∨C)
00001000
00101000
01011101
01111111
10010000
10110011
11010000
11110011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ACBF
0000
0010
0101
0111
1000
1011
1100
1111
Fсднф = ¬A∧C∧¬B ∨ ¬A∧C∧B ∨ A∧¬C∧B ∨ A∧C∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ACBF
0000
0010
0101
0111
1000
1011
1100
1111
Fскнф = (A∨C∨B) ∧ (A∨C∨¬B) ∧ (¬A∨C∨B) ∧ (¬A∨¬C∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ACBFж
0000
0010
0101
0111
1000
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧C ⊕ C001∧B ⊕ C110∧A∧C ⊕ C101∧A∧B ⊕ C011∧C∧B ⊕ C111∧A∧C∧B

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = C ⊕ A∧C ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы