Для функции (X1|X2)→(¬X1∨X2):


Промежуточные таблицы истинности:
X1|X2:
X1X2X1|X2
001
011
101
110

¬X1:
X1¬X1
01
10

(¬X1)∨X2:
X1X2¬X1(¬X1)∨X2
0011
0111
1000
1101

(X1|X2)→((¬X1)∨X2):
X1X2X1|X2¬X1(¬X1)∨X2(X1|X2)→((¬X1)∨X2)
001111
011111
101000
110011

Общая таблица истинности:

X1X2X1|X2¬X1(¬X1)∨X2(X1|X2)→(¬X1∨X2)
001111
011111
101000
110011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
X1X2F
001
011
100
111
Fсднф = ¬X1∧¬X2 ∨ ¬X1∧X2 ∨ X1∧X2
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
X1X2F
001
011
100
111
Fскнф = (¬X1∨X2)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
X1X2Fж
001
011
100
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧X1 ⊕ C01∧X2 ⊕ C11∧X1∧X2

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 1 ⊕ 0 = 1
Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X1 ⊕ X1∧X2
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2016, Список Литературы