Для функции (A∧¬B)∧(¬A∧¬B):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

¬A:
A¬A
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

(A∧(¬B))∧((¬A)∧(¬B)):
AB¬BA∧(¬B)¬A¬B(¬A)∧(¬B)(A∧(¬B))∧((¬A)∧(¬B))
00101110
01001000
10110100
11000000

Общая таблица истинности:

AB¬BA∧(¬B)¬A(¬A)∧(¬B)(A∧¬B)∧(¬A∧¬B)
0010110
0100100
1011000
1100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
010
100
110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
010
100
110
Fскнф = (A∨B) ∧ (A∨¬B) ∧ (¬A∨B) ∧ (¬A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
010
100
110

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 0 ⊕ 0 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы