Для функции (A∧¬B)∨¬C:


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

¬C:
C¬C
01
10

(A∧(¬B))∨(¬C):
ABC¬BA∧(¬B)¬C(A∧(¬B))∨(¬C)
0001011
0011000
0100011
0110000
1001111
1011101
1100011
1110000

Общая таблица истинности:

ABC¬BA∧(¬B)¬C(A∧¬B)∨¬C
0001011
0011000
0100011
0110000
1001111
1011101
1100011
1110000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0010
0101
0110
1001
1011
1101
1110
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧B∧¬C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0010
0101
0110
1001
1011
1101
1110
Fскнф = (A∨B∨¬C) ∧ (A∨¬B∨¬C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0010
0101
0110
1001
1011
1101
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ C ⊕ A∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы