Для функции (A∧C)∧(¬A∧¬B):


Промежуточные таблицы истинности:
A∧C:
ACA∧C
000
010
100
111

¬A:
A¬A
01
10

¬B:
B¬B
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

(A∧C)∧((¬A)∧(¬B)):
ACBA∧C¬A¬B(¬A)∧(¬B)(A∧C)∧((¬A)∧(¬B))
00001110
00101000
01001110
01101000
10000100
10100000
11010100
11110000

Общая таблица истинности:

ACBA∧C¬A¬B(¬A)∧(¬B)(A∧C)∧(¬A∧¬B)
00001110
00101000
01001110
01101000
10000100
10100000
11010100
11110000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ACBF
0000
0010
0100
0110
1000
1010
1100
1110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ACBF
0000
0010
0100
0110
1000
1010
1100
1110
Fскнф = (A∨C∨B) ∧ (A∨C∨¬B) ∧ (A∨¬C∨B) ∧ (A∨¬C∨¬B) ∧ (¬A∨C∨B) ∧ (¬A∨C∨¬B) ∧ (¬A∨¬C∨B) ∧ (¬A∨¬C∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ACBFж
0000
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧C ⊕ C001∧B ⊕ C110∧A∧C ⊕ C101∧A∧B ⊕ C011∧C∧B ⊕ C111∧A∧C∧B

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы