Для функции (A∧B)∨(A∧B):


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

(A∧B)∨(A∧B):
ABA∧BA∧B(A∧B)∨(A∧B)
00000
01000
10000
11111

Общая таблица истинности:

ABA∧B(A∧B)∨(A∧B)
0000
0100
1000
1111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
010
100
111
Fсднф = A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
010
100
111
Fскнф = (A∨B) ∧ (A∨¬B) ∧ (¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
010
100
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 0 ⊕ 0 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 0 ⊕ 0 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A∧B
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2017, Список Литературы