Для функции ¬(¬X∨Y)∧X:


Промежуточные таблицы истинности:
¬X:
X¬X
01
10

(¬X)∨Y:
XY¬X(¬X)∨Y
0011
0111
1000
1101

¬((¬X)∨Y):
XY¬X(¬X)∨Y¬((¬X)∨Y)
00110
01110
10001
11010

(¬((¬X)∨Y))∧X:
XY¬X(¬X)∨Y¬((¬X)∨Y)(¬((¬X)∨Y))∧X
001100
011100
100011
110100

Общая таблица истинности:

XY¬X(¬X)∨Y¬((¬X)∨Y)¬(¬X∨Y)∧X
001100
011100
100011
110100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYF
000
010
101
110
Fсднф = X∧¬Y
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYF
000
010
101
110
Fскнф = (X∨Y) ∧ (X∨¬Y) ∧ (¬X∨¬Y)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYFж
000
010
101
110

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧X ⊕ C01∧Y ⊕ C11∧X∧Y

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 0 ⊕ 1 = 1
Fж(01) = С00 ⊕ С01 = 0 => С01 = 0 ⊕ 0 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ X∧Y
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Это интересно...

Наши контакты

Рейтинг@Mail.ru

© 2009-2018, Список Литературы